cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-60 of 197 results. Next

A060956 Leading digit of 3^n.

Original entry on oeis.org

1, 3, 9, 2, 8, 2, 7, 2, 6, 1, 5, 1, 5, 1, 4, 1, 4, 1, 3, 1, 3, 1, 3, 9, 2, 8, 2, 7, 2, 6, 2, 6, 1, 5, 1, 5, 1, 4, 1, 4, 1, 3, 1, 3, 9, 2, 8, 2, 7, 2, 7, 2, 6, 1, 5, 1, 5, 1, 4, 1, 4, 1, 3, 1, 3, 1, 3, 9, 2, 8, 2, 7, 2, 6, 2, 6, 1, 5, 1, 4, 1, 4, 1, 3, 1, 3, 1, 3, 9, 2, 8, 2, 7, 2, 7, 2, 6, 1, 5, 1, 5, 1, 4, 1, 4
Offset: 0

Views

Author

Ahmed Fares (ahmedfares(AT)my-deja.com), May 08 2001

Keywords

References

  • He, Xinwei; Hildebrand, A J; Li, Yuchen; Zhang, Yunyi, Complexity of Leading Digit Sequences, Discrete Mathematics and Theoretical Computer Science; 22 (2020), #14.

Crossrefs

Programs

  • Mathematica
    First[IntegerDigits[#]]&/@(3^Range[0,110]) (* Harvey P. Dale, May 16 2016 *)
  • PARI
    a(n) = { 3^n \ 10^logint(3^n,10) } \\ Harry J. Smith, Jul 15 2009

Formula

a(n) = floor(3^n / 10^floor(log_10(3^n))) = floor( 3^n / 10^floor(n*log_10(3)) ).
a(n) = A000030(A000244(n)). - Michel Marcus, Jul 03 2018

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), May 11 2001

A082794 Smallest multiple of n beginning with 4.

Original entry on oeis.org

4, 4, 42, 4, 40, 42, 42, 40, 45, 40, 44, 48, 403, 42, 45, 48, 408, 414, 418, 40, 42, 44, 46, 48, 400, 416, 405, 420, 406, 420, 403, 416, 429, 408, 420, 432, 407, 418, 429, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 400, 408, 416, 424, 432, 440, 448, 456, 406, 413
Offset: 1

Views

Author

Amarnath Murthy, Apr 20 2003

Keywords

Comments

a(n) is in {n, 2n, 3n, 4n, 5n, 6n, 7n, 8n, 11n, 12n, 13n, 14n, 15n, 16n, 21n, 22n, 23n, 24n, 31n, 32n}. - Charles R Greathouse IV, Mar 06 2011

Crossrefs

Programs

  • Haskell
    a082794 n = until ((== 4) . a000030) (+ n) n
    -- Reinhard Zumkeller, Mar 27 2012
    
  • Maple
    a:= proc(n) option remember; local m; m:= 0;
          do m:=m+n; if (""||m)[1]="4" then break fi od; m
        end:
    seq(a(n), n=1..60);  # Alois P. Heinz, Apr 04 2021
  • Mathematica
    f[n_] := Block[{m = n}, While[ First@ IntegerDigits@ m != 4, m += n]; m]; Array[f, 56] (* Robert G. Wilson v *)
  • PARI
    a(n)=forstep(k=n, 32*n, n, if(Vec(Str(k))[1]=="4", return(k))) \\ Charles R Greathouse IV, Mar 06 2011
    
  • Python
    def a(n):
      kn = n
      while str(kn)[0] != '4': kn += n
      return kn
    print([a(n) for n in range(1, 57)]) # Michael S. Branicky, Apr 04 2021

Extensions

More terms from Sean A. Irvine, Mar 06 2011

A082795 Smallest multiple of n beginning with 5.

Original entry on oeis.org

5, 50, 51, 52, 5, 54, 56, 56, 54, 50, 55, 504, 52, 56, 510, 512, 51, 54, 57, 500, 504, 506, 506, 504, 50, 52, 54, 56, 58, 510, 527, 512, 528, 510, 525, 504, 518, 532, 507, 520, 533, 504, 516, 528, 540, 506, 517, 528, 539, 50, 51, 52, 53, 54
Offset: 1

Views

Author

Amarnath Murthy, Apr 20 2003

Keywords

Comments

a(n) is in {n, 2n, 3n, 4n, 5n, 6n, 7n, 8n, 9n, 11n, 12n, 13n, 14n, 15n, 16n, 17n, 21n, 22n, 23n, 24n, 25n, 31n, 32n, 33n, 34n, 41n, 42n}. [Charles R Greathouse IV, Mar 06 2011]

Crossrefs

Programs

  • Haskell
    a082795 n = until ((== 5) . a000030) (+ n) n
    -- Reinhard Zumkeller, Mar 27 2012
  • Mathematica
    f[n_] := Block[{m = n}, While[ First@ IntegerDigits@ m != 5, m += n]; m]; Array[f, 54] (* Robert G. Wilson v *)
  • PARI
    a(n)=forstep(k=n, 42*n, n, if(Vec(Str(k))[1]=="5", return(k))) \\ Charles R Greathouse IV, Mar 06 2011
    

Extensions

Corrected and extended by Sean A. Irvine, Mar 06 2011

A082796 Smallest multiple of n beginning with 6.

Original entry on oeis.org

6, 6, 6, 60, 60, 6, 63, 64, 63, 60, 66, 60, 65, 602, 60, 64, 68, 612, 608, 60, 63, 66, 69, 600, 600, 624, 621, 616, 609, 60, 62, 64, 66, 68, 630, 612, 629, 608, 624, 600, 615, 630, 602, 616, 630, 644, 611, 624, 637, 600, 612, 624, 636, 648, 605, 616, 627, 638
Offset: 1

Views

Author

Amarnath Murthy, Apr 20 2003

Keywords

Comments

a(n) is in {n, 2n, 3n, 4n, 5n, 6n, 7n, 8n, 9n, 11n, 12n, 13n, 14n, 15n, 16n, 17n, 18n, 21n, 22n, 23n, 24n, 25n, 26n, 31n, 32n, 33n, 34n, 35n, 41n, 42n, 43n, 51n, 52n}. - Charles R Greathouse IV, Mar 06 2011

Crossrefs

Programs

  • Haskell
    a082796 n = until ((== 6) . a000030) (+ n) n
    -- Reinhard Zumkeller, Mar 27 2012
    
  • Mathematica
    f[n_] := Block[{m = n}, While[ First@ IntegerDigits@ m != 6, m += n]; m]; Array[f, 55] (* Robert G. Wilson v *)
  • PARI
    a(n)=forstep(k=n, 52*n, n, if(Vec(Str(k))[1]=="6", return(k))) \\ Charles R Greathouse IV, Mar 06 2011
    
  • Python
    def a(n):
        m = n
        while str(m)[0] != '6': m += n
        return m
    print([a(n) for n in range(1, 59)]) # Michael S. Branicky, Jun 06 2021

Extensions

More terms from Sean A. Irvine, Mar 06 2011

A208259 Numbers starting and ending with digit 1.

Original entry on oeis.org

1, 11, 101, 111, 121, 131, 141, 151, 161, 171, 181, 191, 1001, 1011, 1021, 1031, 1041, 1051, 1061, 1071, 1081, 1091, 1101, 1111, 1121, 1131, 1141, 1151, 1161, 1171, 1181, 1191, 1201, 1211, 1221, 1231, 1241, 1251, 1261, 1271, 1281, 1291, 1301, 1311, 1321, 1331
Offset: 1

Views

Author

Jaroslav Krizek, Feb 24 2012

Keywords

Comments

A000030(a(n)) = a(n) mod 10 = 1. - Reinhard Zumkeller, Jul 16 2014

Crossrefs

Intersection of A017281 and A131835. Union of A062332 and A208260.
Supersequence of A208262 (numbers with all divisors starting and ending with digit 1).
Cf. A062332 (primes starting and ending with a digit 1), A208260 (nonprime numbers starting and ending with a digit 1).

Programs

  • Haskell
    a208259 n = a208259_list !! (n-1)
    a208259_list = 1 : map ((+ 1) . (* 10)) a131835_list
    -- Reinhard Zumkeller, Jul 16 2014
  • Mathematica
    Select[Range[2000], First[IntegerDigits[#]] == 1 && Last[IntegerDigits[#]] == 1 &] (* Vladimir Joseph Stephan Orlovsky, Feb 26 2012 *)

A254338 Initial digits of A254143 in decimal representation.

Original entry on oeis.org

1, 4, 7, 1, 2, 3, 3, 4, 6, 1, 1, 2, 2, 2, 3, 3, 3, 4, 6, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 4, 4, 6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2
Offset: 1

Views

Author

Reinhard Zumkeller, Feb 27 2015

Keywords

Comments

a(n) = A000030(A254143(n));
also initial digits of A254323: a(n) = A000030(A254323(n)).
all terms are of the form u*v mod 10, where u <= v and belonging to {1,3,4,6,7}, the distinct elements of A254397:
length of k-th run of consecutive 1s = A005993(k-2), k > 1;
length of k-th run of consecutive 2s = k*(k+1)/2 = A000217(k), k >= 1;
length of k-th run of consecutive 3s = k+1, k >= 1;
length of k-th run of consecutive 4s = A065033(k-1);
n with a(n) = 4: A237424(n) = (10^a+10^b+1)/3 with b = 0, see also A093137, A133384;
n with a(n) = 6: A237424(n) = (10^a+10^b+1)/3 with a = b; A005994(a(n)) = 6 for n > 1; see also A199682;

Crossrefs

Programs

  • Haskell
    a254338 = a000030 . a254143
    
  • PARI
    listA237424(lim)=my(v=List(),a,t); while(1, for(b=0,a, t=(10^a+10^b+1)/3; if(t>lim, return(Set(v))); listput(v, t)); a++)
    do(lim)=my(v=List(),u=listA237424(lim),t); for(i=1,#u, for(j=1,i, t=u[i]*u[j]; if(t>lim,break); listput(v,t))); apply(n->digits(n)[1], Set(v)) \\ Charles R Greathouse IV, May 13 2015

A082797 Smallest multiple of n beginning with 7.

Original entry on oeis.org

7, 70, 72, 72, 70, 72, 7, 72, 72, 70, 77, 72, 78, 70, 75, 704, 714, 72, 76, 700, 714, 704, 713, 72, 75, 78, 702, 700, 725, 720, 713, 704, 726, 714, 70, 72, 74, 76, 78, 720, 738, 714, 731, 704, 720, 736, 705, 720, 735, 700, 714, 728, 742, 702, 715
Offset: 1

Views

Author

Amarnath Murthy, Apr 20 2003

Keywords

Comments

a(n) is in {n, 2n, 3n, 4n, 5n, 6n, 7n, 8n, 9n, 11n, 12n, 13n, 14n, 15n, 16n, 17n, 18n, 21n, 22n, 23n, 24n, 25n, 26n, 27n, 31n, 32n, 33n, 34n, 35n, 41n, 42n, 43n, 44n, 51n, 52n, 53n, 61n, 62n}. [Charles R Greathouse IV, Mar 06 2011]

Crossrefs

Programs

  • Haskell
    a082797 n = until ((== 7) . a000030) (+ n) n
    -- Reinhard Zumkeller, Mar 27 2012
  • Mathematica
    f[n_] := Block[{m = n}, While[ First@ IntegerDigits@ m != 7, m += n]; m]; Array[f, 55] (* Robert G. Wilson v *)
  • PARI
    a(n)=forstep(k=n, 62*n, n, if(Vec(Str(k))[1]=="7", return(k))) \\ Charles R Greathouse IV, Mar 06 2011
    

Extensions

Corrected and extended by Sean A. Irvine, Mar 06 2011

A082798 Smallest multiple of n beginning with 8.

Original entry on oeis.org

8, 8, 81, 8, 80, 84, 84, 8, 81, 80, 88, 84, 806, 84, 810, 80, 85, 810, 817, 80, 84, 88, 805, 816, 800, 806, 81, 84, 87, 810, 806, 800, 825, 816, 805, 828, 814, 836, 819, 80, 82, 84, 86, 88, 810, 828, 846, 816, 833, 800, 816, 832, 848, 810, 825, 840, 855, 812
Offset: 1

Views

Author

Amarnath Murthy, Apr 20 2003

Keywords

Comments

a(n) is in {n, 2n, 3n, 4n, 5n, 6n, 7n, 8n, 9n, 11n, 12n, 13n, 14n, 15n, 16n, 17n, 18n, 21n, 22n, 23n, 24n, 25n, 26n, 27n, 31n, 32n, 33n, 34n, 35n, 36n, 41n, 42n, 43n, 44n, 45n, 51n, 52n, 53n, 54n, 61n, 62n, 63n, 71n, 72n}. [Charles R Greathouse IV, Mar 06 2011]

Crossrefs

Programs

  • Haskell
    a082798 n = until ((== 8) . a000030) (+ n) n
    -- Reinhard Zumkeller, Mar 27 2012
    
  • Mathematica
    f[n_] := Block[{m = n}, While[ First@ IntegerDigits@ m != 8, m += n]; m]; Array[f, 55] (* Robert G. Wilson v *)
  • PARI
    a(n)=forstep(k=n, 72*n, n, if(Vec(Str(k))[1]=="8", return(k))) \\ Charles R Greathouse IV, Mar 06 2011
    
  • Python
    def a(n):
        m = n
        while str(m)[0] != '8': m += n
        return m
    print([a(n) for n in range(1, 59)]) # Michael S. Branicky, Aug 08 2021

Extensions

Corrected and extended by Sean A. Irvine, Mar 06 2011

A097413 Initial decimal digit of n^9.

Original entry on oeis.org

1, 5, 1, 2, 1, 1, 4, 1, 3, 1, 2, 5, 1, 2, 3, 6, 1, 1, 3, 5, 7, 1, 1, 2, 3, 5, 7, 1, 1, 1, 2, 3, 4, 6, 7, 1, 1, 1, 2, 2, 3, 4, 5, 6, 7, 9, 1, 1, 1, 1, 2, 2, 3, 3, 4, 5, 6, 7, 8, 1, 1, 1, 1, 1, 2, 2, 2, 3, 3, 4, 4, 5, 5, 6, 7, 8, 9, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 4, 4, 5, 5, 6, 6, 7, 8, 9, 1, 1, 1, 1
Offset: 1

Views

Author

Eric W. Weisstein, Aug 16 2004

Keywords

Examples

			1, 512, 19683, 262144, 1953125, 10077696, 40353607, 134217728, 387420489, 1000000000, ...
		

Crossrefs

Programs

  • Maple
    idd:= n -> floor(n/10^ilog10(n)):
    seq(idd(n^9),n=2..100); # Robert Israel, Jan 28 2016
  • Mathematica
    Table[IntegerDigits[n^9][[1]],{n,120}] (* Harvey P. Dale, Aug 25 2023 *)

Formula

a(n) = A000030(n^9) = floor(n^9/10^A004216(n^9)). - Robert Israel, Jan 28 2016

A098174 a(n) is the smallest e > 0 such that the initial digit of n^e = 1 in decimal representation.

Original entry on oeis.org

1, 4, 9, 2, 3, 4, 5, 8, 16, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 4, 3, 3, 3, 3, 3, 3, 5, 7, 9, 25, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 5, 11, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 7, 7, 7, 8, 8, 9, 9, 10, 10, 11, 12, 13, 14, 16, 18, 20, 23, 27, 32, 40, 53
Offset: 1

Views

Author

Reinhard Zumkeller, Aug 30 2004

Keywords

Comments

A000030(n^a(n)) = 1; A098175(n) = n^a(n).
From Rémy Sigrist, Jun 25 2018: (Start)
We can extend this sequence to every Gaussian integers as follows:
- for any Gaussian integer z, let f(z) be the least k > 0 such that the initial decimal digit of the real part of z^k equals 1, or -1 if no such k exists,
- naturally f(n) = a(n) for any n > 0,
- apparently f(z) = -1 iff z = 0,
- see Links section for the color plot of f.
(End)

Crossrefs

Programs

  • PARI
    a(n, base=10) = my (nk=n); for (k=1, oo, my (z); logint(nk, base, &z); if (nk\z==1, return (k), nk*=n)) \\ Rémy Sigrist, Jun 21 2018
Previous Showing 51-60 of 197 results. Next