cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 1497 results. Next

A215602 a(n) = L(n)*L(n+1), where L = A000032 (Lucas numbers).

Original entry on oeis.org

2, 3, 12, 28, 77, 198, 522, 1363, 3572, 9348, 24477, 64078, 167762, 439203, 1149852, 3010348, 7881197, 20633238, 54018522, 141422323, 370248452, 969323028, 2537720637, 6643838878, 17393796002, 45537549123, 119218851372, 312119004988, 817138163597, 2139295485798, 5600748293802, 14662949395603, 38388099893012, 100501350283428
Offset: 0

Views

Author

N. J. A. Sloane, Aug 17 2012

Keywords

Crossrefs

Cf. A000032, A215580. A075269 is a signed version.

Programs

  • Mathematica
    Table[LucasL[n]*LucasL[n + 1], {n, 0, 33}] (* Amiram Eldar, Oct 06 2020 *)
  • PARI
    a(n) = round(((-1)^n+(2^(-1-n)*((3-sqrt(5))^n*(-5+sqrt(5))+(3+sqrt(5))^n*(5+sqrt(5))))/sqrt(5))) \\ Colin Barker, Oct 01 2016
    
  • PARI
    Vec((2-x+2*x^2)/((1+x)*(x^2-3*x+1)) + O(x^30)) \\ Colin Barker, Oct 01 2016

Formula

G.f.: ( 2-x+2*x^2 ) / ( (1+x)*(x^2-3*x+1) ). - R. J. Mathar, Aug 21 2012
a(n) = A002878(n)+(-1)^n. - R. J. Mathar, Aug 21 2012
a(n) = F(n-1)*F(n) + F(n-1)*F(n+2) + F(n+1)*F(n) + F(n+1)*F(n+2), where F=A000045, F(-1)=1. - Bruno Berselli, Nov 03 2015
a(n) = F(2*n) + F(2*n+2) + (-1)^n with F(k)=A000045(k). - J. M. Bergot, Apr 15 2016
a(n) = ((-1)^n+(2^(-1-n)*((3-sqrt(5))^n*(-5+sqrt(5))+(3+sqrt(5))^n*(5+sqrt(5)))) / sqrt(5)). - Colin Barker, Oct 01 2016
Sum_{n>=0} (-1)^n/a(n) = sqrt(5)/10. - Amiram Eldar, Oct 06 2020

A067593 Number of partitions of n into Lucas parts (A000032).

Original entry on oeis.org

1, 1, 2, 3, 5, 6, 9, 12, 16, 20, 26, 33, 41, 50, 62, 75, 90, 107, 129, 151, 178, 208, 244, 281, 326, 375, 431, 491, 561, 638, 723, 816, 922, 1037, 1163, 1302, 1458, 1624, 1808, 2009, 2231, 2467, 2729, 3012, 3321, 3651, 4014, 4406, 4828, 5282, 5777, 6308, 6877, 7491, 8155, 8862, 9622, 10438, 11316, 12247, 13249
Offset: 0

Views

Author

Naohiro Nomoto, Jan 31 2002

Keywords

Examples

			a(5)=6 because we have 4+1, 3+2, 3+1+1, 2+2+1, 2+1+1+1 and 1+1+1+1+1.
		

Programs

  • PARI
    N=66; q='q+O('q^N);
    L(n) = fibonacci(n+1) + fibonacci(n-1);
    gf = 1; k=0; while( L(k) <= N, gf*=(1-q^L(k)); k+=1 ); gf = 1/gf;
    Vec( gf ) /* Joerg Arndt, Mar 26 2014 */

Formula

G.f.: 1/((1-x^2)*prod(i>=1, 1-x^(fibonacci(i-1)+fibonacci(i+1)) ) ). - Emeric Deutsch, Mar 23 2005
G.f.: 1 / prod(n>=0, 1 - q^A000032(n) ). [Joerg Arndt, Mar 26 2014]

A121171 Largest prime divisor of Lucas(5*n), where Lucas(k) = A000032(k).

Original entry on oeis.org

11, 41, 31, 2161, 151, 2521, 911, 3041, 541, 570601, 39161, 20641, 24571, 12317523121, 18451, 23725145626561, 12760031, 10783342081, 87382901, 5738108801, 767131, 59996854928656801, 686551, 23735900452321, 28143378001, 42426476041450801, 119611
Offset: 1

Views

Author

Alexander Adamchuk, Aug 14 2006

Keywords

Comments

Final digit of a(n) is 1. Mod[a(n),10] = 1. Final digit of many prime divisors of Lucas(5*n) is 1.

Crossrefs

Programs

  • Mathematica
    Table[Max[Flatten[FactorInteger[Fibonacci[5n-1]+Fibonacci[5n+1]]]],{n,1,40}]
  • PARI
    lucas(n) = fibonacci(n+1)+fibonacci(n-1); \\ A000032
    a(n) = vecmax(factor(lucas(5*n))[,1]); \\ Daniel Suteu, May 26 2022

Formula

a(n) = A006530(A000032(5*n)) = A079451(5*n). - Daniel Suteu, May 26 2022

A166473 a(n) = 2^L(n+1) * 3^L(n)/12, where L(n) is the n-th Lucas number (A000032(n)).

Original entry on oeis.org

2, 36, 864, 373248, 3869835264, 17332899271409664, 804905577934332296851095552, 167416167663978753511691999938432197602574336
Offset: 1

Views

Author

Matthew Vandermast, Nov 05 2009

Keywords

Comments

For m>1, A166469(A002110(m)*a(n)) = L(m+n).
A166469(a(n)) = L(n+2) - 2 = A014739(n).

Crossrefs

Subsequence of A003586, A025487.

Programs

  • GAP
    List([1..10], n-> 2^(Lucas(1,-1,n+1)[2]-2)*3^(Lucas(1,-1,n)[2]-1)); # G. C. Greubel, Jul 22 2019
  • Magma
    [2^(Lucas(n+1)-2)*3^(Lucas(n)-1): n in [1..10]]; // G. C. Greubel, Jul 22 2019
    
  • Mathematica
    Table[(2^LucasL[n+1] 3^LucasL[n])/12,{n,10}] (* Harvey P. Dale, Aug 17 2011 *)
  • PARI
    lucas(n) = fibonacci(n+1) + fibonacci(n-1);
    vector(10, n,  2^(lucas(n+1)-2)*3^(lucas(n)-1) ) \\ G. C. Greubel, Jul 22 2019
    
  • Sage
    [2^(lucas_number2(n+1,1,-1)-2)*3^(lucas_number2(n,1,-1)-1) for n in (1..10)] # G. C. Greubel, Jul 22 2019
    

Formula

a(n) = A166471(n)/12.
For n>1, a(n) = 12*a(n-1) * a(n-2).

A191929 Ordered sums f+4g, where f and g are Lucas numbers (A000032 beginning at 1).

Original entry on oeis.org

5, 7, 8, 11, 13, 15, 16, 17, 19, 20, 22, 23, 27, 29, 30, 31, 32, 33, 34, 35, 39, 41, 45, 46, 47, 48, 51, 55, 57, 59, 62, 63, 73, 75, 76, 79, 80, 83, 88, 90, 91, 92, 101, 104, 117, 119, 120, 123, 127, 134, 135, 139, 145, 148, 151, 163, 167, 189, 191, 192, 195
Offset: 1

Views

Author

Clark Kimberling, Jun 19 2011

Keywords

Crossrefs

Programs

  • Mathematica
    c = 1; d = 4; f[n_] := LucasL[n];
    g[n_] := c*f[n]; h[n_] := d*f[n];
    t[i_, j_] := h[i] + g[j];
    u = Table[t[i, j], {i, 1, 20}, {j, 1, 20}];
    v = Union[Flatten[u]]    (* A191929 *)
    t1[i_, j_] := If[g[i] - h[j] > 0, g[i] - h[j], 0]
    u1 = Table[t1[i, j], {i, 1, 20}, {j, 1, 20}];
    v1 = Union[Flatten[u1]]  (* A191930: c*f(i)-d*f(j) *)
    g1[n_] := d*f[n]; h1[n_] := c*f[n];
    t2[i_, j_] := If[g1[i] - h1[j] > 0, g1[i] - h1[j], 0]
    u2 = Table[t2[i, j], {i, 1, 20}, {j, 1, 20}];
    v2 = Union[Flatten[u2]]  (* A191931: d*f(i)-c*f(j) *)
    v3 = Union[v1, v2]       (* A191932 *)

A203318 G.f.: exp( Sum_{n>=1} x^n/n * exp( Sum_{k>=1} Lucas(n*k)*x^(n*k)/k ) ) where Lucas(n) = A000032(n).

Original entry on oeis.org

1, 1, 2, 4, 9, 16, 36, 64, 135, 250, 504, 917, 1864, 3372, 6593, 12176, 23473, 42732, 82142, 149282, 283104, 516780, 967894, 1757865, 3291964, 5959633, 11039163, 20022457, 36908442, 66637739, 122512809, 220717328, 403499293, 726866565, 1322670966, 2376541137
Offset: 0

Views

Author

Paul D. Hanna, Dec 31 2011

Keywords

Comments

Note: 1/(1-x-x^2) = exp(Sum_{n>=1} Lucas(n)*x^n/n) is the g.f. of the Fibonacci numbers.

Examples

			G.f.: A(x) = 1 + x + 2*x^2 + 4*x^3 + 9*x^4 + 16*x^5 + 36*x^6 + 64*x^7 +...
G.f.: A(x) = exp( Sum_{n>=1} F_n(x^n) * x^n/n )
where F_n(x) = exp( Sum_{k>=1} Lucas(n*k)*x^k/k ), which begin:
F_1(x) = 1 + x + 2*x^2 + 3*x^3 + 5*x^4 + 8*x^5 + 13*x^6 + 21*x^7 +...;
F_2(x) = 1 + 3*x + 8*x^2 + 21*x^3 + 55*x^4 + 144*x^5 + 377*x^6 +...;
F_3(x) = 1 + 4*x + 17*x^2 + 72*x^3 + 305*x^4 + 1292*x^5 + 5473*x^6 +...;
F_4(x) = 1 + 7*x + 48*x^2 + 329*x^3 + 2255*x^4 + 15456*x^5 +...;
F_5(x) = 1 + 11*x + 122*x^2 + 1353*x^3 + 15005*x^4 + 166408*x^5 +...;
F_6(x) = 1 + 18*x + 323*x^2 + 5796*x^3 + 104005*x^4 + 1866294*x^5 +...;
...
Also, F_n(x^n) = Product_{k=0..n-1} F(u^k*x) where u = n-th root of unity:
F_1(x) = F(x) = 1/(1-x-x^2) = g.f. of the Fibonacci numbers;
F_2(x^2) = F(x)*F(-x) = 1/(1-3*x^2+x^4);
F_3(x^3) = F(x)*F(w*x)*F(w^2*x) = 1/(1-4*x^3-x^6) where w = exp(2*Pi*I/3);
F_4(x^4) = F(x)*F(I*x)*F(-x)*F(-I*x) = 1/(1-7*x^4+x^8);
F_5(x^5) = 1/(1-11*x^5-x^10);
In general,
F_n(x^n) = 1/(1 - Lucas(n)*x^n + (-1)^n*x^(2*n)).
...
The logarithmic derivative of this sequence begins:
A203319 = [1,3,7,19,26,81,92,267,358,848,980,3061,3030,7976,...].
		

Crossrefs

Cf. A203319, A203320, A000032 (Lucas); A203413 (Pell variant).

Programs

  • PARI
    {Lucas(n)=fibonacci(n-1)+fibonacci(n+1)}
    {a(n)=polcoeff(exp(sum(m=1,n+1,(x^m/m)/(1-Lucas(m)*x^m+(-1)^m*x^(2*m)+x*O(x^n)))),n)}
    
  • PARI
    {Lucas(n)=fibonacci(n-1)+fibonacci(n+1)}
    {a(n)=local(L=vector(n+1, i, 1)); L=Vec(deriv(sum(m=1, n, x^m/m*exp(sum(k=1, floor((n+1)/m), Lucas(m*k)*x^(m*k)/k)+x*O(x^n))))); polcoeff(exp(x*Ser(vector(n+1, m, L[m]/m))), n)}
    
  • PARI
    {a(n)=local(A=1+x+x*O(x^n),F=1/(1-x-x^2+x*O(x^n))); A=exp(sum(m=1, n+1, x^m/m*round(prod(k=0, m-1, subst(F, x, exp(2*Pi*I*k/m)*x+x*O(x^n)))))); polcoeff(A, n)}

Formula

G.f.: exp( Sum_{n>=1} A203319(n)*x^n/n ) where A203319(n) = n*fibonacci(n)*Sum_{d|n} 1/(d*fibonacci(d)).
G.f.: exp( Sum_{n>=1} (x^n/n) / (1 - Lucas(n)*x^n + (-1)^n*x^(2*n)) ) where Lucas(n) = A000032(n).
G.f.: exp( Sum_{n>=1} F_n(x^n) * x^n/n ) such that F_n(x^n) = Product_{k=0..n-1} F(u^k*x) where F(x) = 1/(1-x-x^2) and u is an n-th root of unity.

A263575 Stirling transform of Lucas numbers (A000032).

Original entry on oeis.org

2, 1, 4, 14, 53, 227, 1092, 5791, 33350, 206511, 1365563, 9590847, 71216713, 556861216, 4569168866, 39222394456, 351304769679, 3275433717440, 31723522878974, 318571978752719, 3311400814816987, 35573458376435132, 394404160256111139, 4507130777468928696
Offset: 0

Views

Author

Vladimir Reshetnikov, Oct 21 2015

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[LucasL[k] StirlingS2[n, k], {k, 0, n}], {n, 0, 23}]
    Table[Simplify[BellB[n, GoldenRatio] + BellB[n, 1 - GoldenRatio]], {n, 0, 23}]

Formula

a(n) = Sum_{k=0..n} A000032(k)*Stirling2(n,k).
Let phi = (1+sqrt(5))/2.
a(n) = B_n(phi)+B_n(1-phi), where B_n(x) is n-th Bell polynomial.
2*B_n(phi) = a(n) + A263576*sqrt(5).
E.g.f.: exp((exp(x)-1)*phi)+exp((exp(x)-1)*(1-phi)).
Sum_{k=0..n} a(k)*Stirling1(n,k) = A000032(n).
G.f.: Sum_{j>=0} Lucas(j)*x^j / Product_{k=1..j} (1 - k*x). - Ilya Gutkovskiy, Apr 06 2019

A280694 Largest Lucas number (A000032) dividing n.

Original entry on oeis.org

1, 2, 3, 4, 1, 3, 7, 4, 3, 2, 11, 4, 1, 7, 3, 4, 1, 18, 1, 4, 7, 11, 1, 4, 1, 2, 3, 7, 29, 3, 1, 4, 11, 2, 7, 18, 1, 2, 3, 4, 1, 7, 1, 11, 3, 2, 47, 4, 7, 2, 3, 4, 1, 18, 11, 7, 3, 29, 1, 4, 1, 2, 7, 4, 1, 11, 1, 4, 3, 7, 1, 18, 1, 2, 3, 76, 11, 3, 1, 4, 3, 2, 1, 7, 1, 2, 29, 11, 1, 18, 7, 4, 3, 47, 1, 4, 1, 7, 11, 4, 1, 3, 1, 4, 7, 2, 1, 18, 1, 11, 3, 7, 1
Offset: 1

Views

Author

Antti Karttunen, Jan 11 2017

Keywords

Crossrefs

Cf. A057854 (gives the positions n > 1 where this sequence and A280696 obtain equal values).

Programs

  • Scheme
    ;; A stand-alone program:
    (define (A280694 n) (let loop ((l1 1) (l2 3) (lpd 1)) (cond ((> l1 n) (if (and (= 1 lpd) (even? n)) 2 lpd)) ((zero? (modulo n l1)) (loop l2 (+ l1 l2) l1)) (else (loop l2 (+ l1 l2) lpd)))))

Formula

a(n) = n / A280695(n).
Other identities. For all n >= 1:
a(A000032(n)) = A000032(n).
a(A057854(n)) = A280696(A057854(n)).
a(A000045(n)) = A280699(n).

A355021 a(n) = (-1)^n * A000032(n) - 1.

Original entry on oeis.org

1, -2, 2, -5, 6, -12, 17, -30, 46, -77, 122, -200, 321, -522, 842, -1365, 2206, -3572, 5777, -9350, 15126, -24477, 39602, -64080, 103681, -167762, 271442, -439205, 710646, -1149852, 1860497, -3010350, 4870846, -7881197, 12752042, -20633240, 33385281
Offset: 0

Views

Author

Clark Kimberling, Jun 21 2022

Keywords

Comments

There are the partial sums of L(1) - L(2) + L(3) - L(4) + L(5) - ... .
Closely related (Fibonacci, A000045) partial sums of F(1) - F(2) + F(3) - F(4) + F(5) - ... are given by A355020.
Apart from signs, same as A098600 and A181716.

Examples

			a(0) = 1;
a(1) = 1 - 3 = -2;
a(2) = 1 - 3 + 4 = 2;
a(3) = 1 - 3 + 4 - 7 = -5.
		

Crossrefs

Programs

  • Magma
    [Lucas(-n) -1: n in [0..50]]; // G. C. Greubel, Mar 17 2024
    
  • Mathematica
    f[n_] := Fibonacci[n]; g[n_] := LucasL[n];
    f1 = Table[(-1)^n f[n] + 1, {n, 0, 40}]   (* A355020 *)
    g1 = Table[(-1)^n g[n] - 1, {n, 0, 40}]   (* this sequence *)
    LucasL[-Range[0, 50]] - 1 (* G. C. Greubel, Mar 17 2024 *)
    LinearRecurrence[{0,2,-1},{1,-2,2},40] (* Harvey P. Dale, Sep 06 2024 *)
  • SageMath
    [lucas_number2(-n,1,-1) -1 for n in range(51)] # G. C. Greubel, Mar 17 2024

Formula

a(n) = 2*a(n-2) - a(n-3) for n >= 3. [Corrected by Georg Fischer, Sep 30 2022]
G.f.: (1 - 2*x)/(1 - 2*x^2 + x^3).

A380821 Length of the shorts leg in the unique primitive Pythagorean triple whose inradius is A000032(n) and such that its long leg and its hypotenuse are consecutive natural numbers.

Original entry on oeis.org

5, 3, 7, 9, 15, 23, 37, 59, 95, 153, 247, 399, 645, 1043, 1687, 2729, 4415, 7143, 11557, 18699, 30255, 48953, 79207, 128159, 207365, 335523, 542887, 878409, 1421295, 2299703, 3720997, 6020699, 9741695, 15762393, 25504087, 41266479, 66770565, 108037043
Offset: 0

Views

Author

Keywords

Examples

			 n=0:      5,    12,    13;
 n=1:      3,     4,     5;
 n=2:      7,    24,    25;
 n=3:      9,    40,    41.
This sequence is the first column.
		

Crossrefs

Cf. A380823 (semiperimeter), A380824 (area), A000032 (inradius), A386201 (long legs).

Programs

  • Mathematica
    a=Table[LucasL[n],{n,0,15}];Apply[Join,Map[{2#+1,2#^2+2#,2#^2+2#+1}&,a]]

Formula

a(n) = 2*A000032(n) + 1.
Previous Showing 41-50 of 1497 results. Next