cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-60 of 693 results. Next

A126044 Exponents p of the Mersenne primes 2^p - 1 (see A000043) read mod 4.

Original entry on oeis.org

2, 3, 1, 3, 1, 1, 3, 3, 1, 1, 3, 3, 1, 3, 3, 3, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 3, 3, 4, 3, 3, 1, 3, 1, 1, 1, 1, 1, 3, 3, 3, 1, 1, 3, 1, 1, 1
Offset: 1

Views

Author

Artur Jasinski, Dec 17 2006

Keywords

Crossrefs

Programs

  • Mathematica
    Array[Mod[MersennePrimeExponent@ #, 4] &, 45] (* Michael De Vlieger, Apr 07 2018 *)

Formula

a(n) = A010873(A000043(n)). - Michel Marcus, Apr 07 2018

Extensions

a(45)-a(46) from Ivan Panchenko, Apr 07 2018
a(47) from Ivan Panchenko, Apr 09 2018
a(48) from Amiram Eldar, Oct 14 2024

A126058 Exponents p of the Mersenne primes 2^p - 1 (see A000043) read mod 18.

Original entry on oeis.org

2, 3, 5, 7, 13, 17, 1, 13, 7, 17, 17, 1, 17, 13, 1, 7, 13, 13, 5, 13, 5, 5, 17, 11, 11, 7, 1, 5, 1, 1, 1, 11, 5, 1, 11, 11, 5, 5, 1, 1, 13, 5, 7, 11, 5, 1, 17, 5
Offset: 1

Views

Author

Artur Jasinski, Dec 17 2006

Keywords

Crossrefs

Programs

  • Mathematica
    Array[Mod[MersennePrimeExponent@ #, 18] &, 45] (* Michael De Vlieger, Apr 10 2018 *)

Extensions

a(45)-a(47) from Ivan Panchenko, Apr 09 2018
a(48) from Amiram Eldar, Oct 15 2024

A139117 Triangular numbers (A000217) with indices A000043.

Original entry on oeis.org

3, 6, 15, 28, 91, 153, 190, 496, 1891, 4005, 5778, 8128, 135981, 184528, 818560, 2427706, 2602621, 5176153, 9046131, 9783676, 46943205, 49416711, 62871291, 198751953, 235477551, 269340445, 990013753, 3718970646, 6105511756, 8718535225, 23347768186, 286403014380
Offset: 1

Views

Author

Omar E. Pol, May 08 2008

Keywords

Examples

			a(4) = 28 because A000043(4) = 7 and the 7th triangular number A000217(7) is 28.
		

Crossrefs

Programs

  • Mathematica
    Map[#*(#+1)/2 &, MersennePrimeExponent[Range[48]]] (* Amiram Eldar, Oct 21 2024 *)

Formula

a(n) = A000217(A000043(n)).

A159585 Nearest k to j such that k*(2^j-1)+1 is prime where j=A000043(n) and 2^j-1 = Mersenne-prime(n) = A000668(n). If there are two k values equidistant from j, each of which produces a prime, the larger of the two gets added to the sequence.

Original entry on oeis.org

2, 4, 10, 4, 46, 22, 16, 46, 66, 136, 166, 124, 636, 550, 1474, 3066, 1656, 1816, 3708, 9436, 1746, 3696, 11262, 40138, 25900, 20808, 60340, 58818
Offset: 1

Views

Author

Ray Chandler, Apr 16 2009

Keywords

Examples

			n=6, j=A000043(6)=17, A000668(6)=131071, then k=12 or k=22 are the nearest values to j which produce primes so we take the larger of the two k values for a(6)=22.
		

Crossrefs

A177876 a(n) is the number of distinct prime factors in Lucas-Lehmer numbers A003010(k-2)/(2^k-1), where k = A000043(n+1).

Original entry on oeis.org

2, 3, 3, 4
Offset: 1

Views

Author

G. L. Honaker, Jr., Dec 13 2010

Keywords

Comments

a(5) of this sequence will require the factorization of A003010(15), an 18742-digit integer divisible by 2^17-1.

Examples

			a(1)=2 because A003010(1)=14, contains exactly 2 distinct prime factors;
a(2)=3 because A003010(3)=37634, contains exactly 3 distinct prime factors;
a(3)=3 because A003010(5)=2005956546822746114, contains exactly 3 distinct prime factors;
a(4)=4 because A003010(11)=the associated 1172-digit Lucas-Lehmer number, contains exactly 4 distinct prime factors.
		

Crossrefs

Extensions

Definition corrected by Max Alekseyev, Jul 29 2024

A233008 p mod 24, where p is such that 2^p - 1 is prime (see Mersenne primes, A000043).

Original entry on oeis.org

2, 3, 5, 7, 13, 17, 19, 7, 13, 17, 11, 7, 17, 7, 7, 19, 1, 1, 5, 7, 17, 5, 5, 17, 5, 1, 1, 11, 7, 1, 19, 23, 17, 19, 5, 5, 17, 17, 13, 19, 7, 23, 1, 17, 11, 1, 17, 17
Offset: 1

Views

Author

Freimut Marschner, Dec 03 2013

Keywords

Crossrefs

Programs

  • Mathematica
    Mod[#, 24] &@ MersennePrimeExponent@ Range@ 45 (* Michael De Vlieger, Jul 22 2018 *)

Formula

a(n) = A000043(n) mod 24.

Extensions

a(46)-a(47) corrected and a(48) removed by Gord Palameta, Jul 21 2018
a(48) from Amiram Eldar, Oct 15 2024

A233009 Exponents p of the Mersenne primes 2^p - 1 (see A000043) read mod 23.

Original entry on oeis.org

2, 3, 5, 7, 13, 17, 19, 8, 15, 20, 15, 12, 15, 9, 14, 18, 4, 20, 21, 7, 6, 5, 12, 19, 12, 2, 15, 16, 11, 6, 6, 1, 15, 9, 7, 21, 5, 5, 3, 1, 19, 21, 22, 6, 6, 7, 6, 3
Offset: 1

Views

Author

Freimut Marschner, Dec 03 2013

Keywords

Examples

			For n = 9, the 9th Mersenne prime index is A000043(9) = 61 and a(9) = 61 mod 23 = 15.
		

Crossrefs

Programs

  • Mathematica
    Array[ Mod[ MersennePrimeExponent@#, 23] &, 44] (* Robert G. Wilson v, Aug 06 2018 *)

Formula

a(n) = A000043(n) mod 23.

Extensions

a(46)-a(47) corrected and a(48) removed by Gord Palameta, Aug 06 2018
a(48) from Amiram Eldar, Oct 15 2024

A330163 Even perfect numbers m from A000396 such that w = (m + 2^(k(m) - 1) - 1) * 2^(2*(k(m) - 1)) is also an even perfect number, where k(m) is the Mersenne exponent A000043(m).

Original entry on oeis.org

6, 28, 8128, 2305843008139952128
Offset: 1

Views

Author

Jaroslav Krizek, Dec 04 2019

Keywords

Comments

Corresponding values of even perfect numbers w: 28, 496, 33550336, 2658455991569831744654692615953842176, ... (A330164).
Corresponding values of Mersenne exponents k(m) and k(w): (2, 3, 7, 31, ...), (3, 5, 13, 61, ...), where k(w) = 2*k(m) - 1.

Crossrefs

Programs

  • Magma
    [(2^k - 1) * (2^(k - 1)): k in [1..100] | SumOfDivisors((2^k - 1) * (2^(k - 1))) / ( (2^k - 1) * (2^(k - 1))) eq 2 and SumOfDivisors(((2^k - 1) * (2^(k - 1)) + (2^(k - 1) - 1)) * (2^(2*(k - 1)))) / (((2^k - 1) * (2^(k - 1)) + (2^(k - 1) - 1)) * (2^(2*(k - 1)))) eq 2]
  • Mathematica
    f[n_] := 2^(n - 1)*(2^n - 1); g[n_] := 2^n - 2^((n - 1)/2); mers = MersennePrimeExponent[Range[10]]; g /@ Select[mers, MemberQ[f /@ mers, g[#]] &] (* Amiram Eldar, Dec 06 2019 *)

A330164 Even perfect numbers w from A000396 such that number m = w / 2^(k(w) - 1) - 2^((k(w) - 1)/2) + 1 = 2^k(w) - 2^((k(w) - 1)/2) is also an even perfect number, where k(w) is the Mersenne exponent (A000043) for number w.

Original entry on oeis.org

28, 496, 33550336, 2658455991569831744654692615953842176
Offset: 1

Views

Author

Jaroslav Krizek, Dec 04 2019

Keywords

Comments

Corresponding values of even perfect numbers m: 6, 28, 8128, 2305843008139952128, ... (A330163).
Corresponding values of Mersenne exponents k(w) and k(m): (3, 5, 13, 61, ...), (2, 3, 7, 31, ...), where k(m) = (k(w) + 1)/2.

Crossrefs

Programs

  • Magma
    [(2^k - 1) * 2^(k - 1): k in [1..100] | SumOfDivisors((2^k - 1) * 2^(k - 1)) / ((2^k - 1) * 2^(k - 1)) eq 2 and SumOfDivisors(2^k - 2^((k-1) div 2)) / (2^k - 2^((k-1) div 2) ) eq 2]
  • Mathematica
    f[n_] := 2^(n - 1)*(2^n - 1); g[n_] := 2^n - 2^((n - 1)/2); mers = MersennePrimeExponent[Range[10]]; f /@ Select[mers, MemberQ[f /@ mers, g[#]] &] (* Amiram Eldar, Dec 06 2019 *)

A330839 Numbers of the form 2^(2*p+1)*3*M_p^2, where p > 2 is a Mersenne exponent, A000043, and M_p is the corresponding Mersenne prime, A000668.

Original entry on oeis.org

18816, 5904384, 1585545216, 27015001097109504, 1770860409581431947264, 453345452974878297686016, 127605887476509680055039087507161481216, 169617318218724895492876988148194847148938611392467719301966609041193959424
Offset: 1

Views

Author

Walter Kehowski, Jan 21 2020

Keywords

Comments

Also numbers with power-spectral basis {M_p^2*(M_p+2)^2, 4*M_p^2*(M_p+1)^2, (M_p^2-1)^2}, where by power-spectral basis we mean a spectral basis that consists of primes and powers. The first element of the power-spectral basis is A330819(n+1), the second element is A330840(n+1), and the third element is A330820(n+1).
Subsequence of Zumkeller numbers (A083207), since a(n) = 2^r * 3 * s, where s is relatively prime to 6. - Ivan N. Ianakiev, Feb 03 2020

Examples

			a(1) = 2^(2*3+1) * 3 * 7^2 = 18816, and 18816 has spectral basis {63^2, 112^2, 48^2}, consisting of powers.
		

Crossrefs

Programs

  • Maple
    a := proc(n::posint)
      local p, m;
      p:=NumberTheory[IthMersenne](n+1);
      m:=2^p-1;
      return 2^(2*p+1)*3*m^2;
    end:
  • Mathematica
    f[p_] := 2^(2p + 1)*3*(2^p - 1)^2; f /@ MersennePrimeExponent /@ Range[2, 9] (* Amiram Eldar, Jan 22 2020 *)

Formula

a(n) = A330818(n+1) * 3 * A133049(n+1).
Previous Showing 51-60 of 693 results. Next