cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 44 results. Next

A058381 Number of series-parallel networks with n labeled edges, multiple edges not allowed.

Original entry on oeis.org

0, 1, 1, 4, 20, 156, 1472, 17396, 239612, 3827816, 69071272, 1394315088, 31081310944, 758901184432, 20135117147056, 576927779925568, 17752780676186432, 583910574851160000, 20443098012485430272, 759064322969950283072, 29793617955495321025472
Offset: 0

Views

Author

N. J. A. Sloane, Dec 19 2000

Keywords

Crossrefs

Equals A058379 + A058380.
Cf. A006351.

Programs

  • Mathematica
    max=19; f[x_] := -2*ProductLog[-Sqrt[1+x]/(2*Sqrt[E])]-1;
    CoefficientList[Series[f[x], {x, 0, max}], x]*Range[0, max]! (* Jean-François Alcover, May 21 2012, after Vladeta Jovovic *)
  • Maxima
    a(n):=sum((sum((m+k-1)!*sum(((-1)^j*sum((2^(j-l)*(-1)^l *stirling1(m-l+j-1,j-l))/(l!*(m-l+j-1)!),l,0,j))/(k-j)!,j,0,k),k,0,m-1)) *stirling1(n,m),m,1,n); /* Vladimir Kruchinin, Feb 17 2012 */

Formula

E.g.f.: -2*LambertW(-1/2*exp(-1/2)*(1+x)^(1/2))-1. - Vladeta Jovovic, Aug 21 2006
a(n) = Sum(m=1..n, (Sum(k=0..m-1, (m+k-1)!*Sum(j=0..k, ((-1)^j *Sum(L=0..j, (2^(j-l)*(-1)^L*Stirling1(m-L+j-1,j-L))/(l!*(m-L+j-1)!)))/(k-j)!)))*Stirling1(n,m)). - Vladimir Kruchinin, Feb 17 2012
a(n) ~ n^(n-1) / (sqrt(2) * (4-exp(1))^(n-1/2)). - Vaclav Kotesovec, Jul 09 2013
a(n) = Sum_{k=1..n} Stirling1(n, k) * A006351(k), n > 0. - Sean A. Irvine, Feb 03 2018

A058380 Essentially series series-parallel networks with n labeled edges, multiple edges not allowed.

Original entry on oeis.org

0, 0, 1, 1, 13, 66, 796, 8338, 122326, 1893748, 34717076, 695343144, 15560613872, 379211091416, 10070672083928, 288420300817184, 8877044175277216, 291944826030636000, 10221726849956763136, 379528960298122277536, 14896869800297864928736
Offset: 0

Views

Author

N. J. A. Sloane, Dec 19 2000

Keywords

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[-1/2 - Log[1+x]/2 - LambertW[-E^(-1/2)*Sqrt[1+x]/2], {x, 0, 15}], x]* Range[0, 15]! (* Vaclav Kotesovec, Mar 11 2014 *)

Formula

E.g.f. satisfies A(x) = A058379(x) - log(1+x).
E.g.f.: -1/2 - log(1+x)/2 - LambertW(-exp(-1/2)*sqrt(1+x)/2). - Vaclav Kotesovec, Mar 11 2014
a(n) ~ n^(n-1) / (2*sqrt(2)*(4-exp(1))^(n-1/2)). - Vaclav Kotesovec, Mar 11 2014

A003431 Number of isomorphism classes of connected irreducible posets with n labeled points.

Original entry on oeis.org

1, 1, 0, 0, 1, 12, 104, 956, 10037, 126578, 1971005, 38569954, 958347642, 30400603560, 1234260982770, 64187360439352, 4275470549123119
Offset: 0

Views

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Extensions

More terms from Richard Stanley, Jun 19 2003
2 more terms from Vladeta Jovovic, Feb 17 2008
Title clarified by Geoffrey Critzer, Jul 08 2022
a(0) changed to 1 by Geoffrey Critzer, Jul 10 2022

A006349 Related to series-parallel networks.

Original entry on oeis.org

1, 5, 13, 45, 121, 413, 1261, 4221, 13801, 46365, 155497, 527613, 1792805, 6126293, 20986153, 72121853, 248396793, 857416949, 2964896877, 10269596445, 35622421561, 123728022269, 430254861945, 1497796774077, 5219231003621
Offset: 1

Views

Author

Keywords

References

  • Z. A. Lomnicki, Two-terminal series-parallel networks, Adv. Appl. Prob., 4 (1972), 109-150.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Formula

A058352(n) + n*A000084(n).

A006350 Related to series-parallel networks.

Original entry on oeis.org

0, 1, 7, 27, 101, 337, 1151, 3843, 12965, 43773, 148529, 505605, 1727771, 5920823, 20345445, 70073901, 241849929, 836230109, 2896104951, 10044664507, 34884102385, 121293088909, 422196245641, 1471030361069, 5130057477187, 17905427995239
Offset: 1

Views

Author

Keywords

References

  • Z. A. Lomnicki, Two-terminal series-parallel networks, Adv. Appl. Prob., 4 (1972), 109-150.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Formula

Sum_{k=1..n-1} A000084(k)*A006349(n-k), n >= 2.

A058387 Number of series-parallel networks with n unlabeled edges, multiple edges not allowed.

Original entry on oeis.org

0, 1, 1, 2, 4, 8, 18, 40, 94, 224, 548, 1356, 3418, 8692, 22352, 57932, 151312, 397628, 1050992, 2791516, 7447972, 19950628, 53635310, 144664640, 391358274, 1061628772, 2887113478, 7869761108, 21497678430, 58841838912, 161356288874
Offset: 0

Views

Author

N. J. A. Sloane, Dec 20 2000

Keywords

Comments

This is a series-parallel network: o-o; all other series-parallel networks are obtained by connecting two series-parallel networks in series or in parallel. See A000084 for examples.
Order is not considered significant in series configurations. - Andrew Howroyd, Dec 22 2020

Examples

			From _Andrew Howroyd_, Dec 22 2020: (Start)
In the following examples, elements in series are juxtaposed and elements in parallel are separated by '|'. The unit element (an edge) is denoted by 'o'.
a(1) = 1: (o).
a(2) = 1: (oo).
a(3) = 2: (ooo), (o|oo).
a(4) = 4: (oooo), (o(o|oo)), (o|ooo), (oo|oo).
a(5) = 8: (ooooo), (oo(o|oo)), (o(o|ooo)), (o(oo|oo)), (o|oooo), (o|o(o|oo)),  (oo|ooo), (o|oo|oo).
(End)
		

Crossrefs

A000084 is the case that multiple edges are allowed.
A058381 is the case that edges are labeled.
A339290 is the case that order is significant in series configurations.

Programs

  • PARI
    EulerT(v)={Vec(exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1, -#v)}
    seq(n)={my(s=p=vector(n)); p[1]=1; for(n=2, n, s[n]=EulerT(p[1..n])[n]; p[n]=vecsum(EulerT(s[1..n])[n-1..n])-s[n]); concat([0], p+s)} \\ Andrew Howroyd, Dec 22 2020

Formula

a(n) = A058385(n) + A058386(n).

A058540 Another 3-way generalization of series-parallel networks with n unlabeled edges.

Original entry on oeis.org

0, 1, 3, 9, 36, 144, 651, 3015, 14634, 72654, 369063, 1904985, 9971889, 52788393, 282161025, 1520597895, 8253281871, 45075359277, 247534382298, 1365994896264, 7571065357620, 42127865408028, 235246997219400, 1317894484506336
Offset: 0

Views

Author

N. J. A. Sloane, Dec 24 2000

Keywords

Comments

Compare the combstruct construction here with those for A000084 and A058534.

Crossrefs

Programs

  • Maple
    spec := [ N, {N=Union(Z,S,P,Q), S=Set(Union(Z,P,Q),card>=2), P=Set(Union(Z,S,Q),card>=2), Q=Set(Union(Z,S,P),card>=2)} ]; [seq(combstruct[count](spec,size=n), n=0..40)]; # N=A058540, S=A058371

A058385 Number of essentially parallel series-parallel networks with n unlabeled edges, multiple edges not allowed.

Original entry on oeis.org

0, 1, 0, 1, 2, 4, 9, 20, 47, 112, 274, 678, 1709, 4346, 11176, 28966, 75656, 198814, 525496, 1395758, 3723986, 9975314, 26817655, 72332320, 195679137, 530814386, 1443556739, 3934880554, 10748839215, 29420919456, 80678144437, 221618678694
Offset: 0

Views

Author

N. J. A. Sloane, Dec 20 2000

Keywords

Crossrefs

Programs

  • Maple
    Q := x; q[1] := 1; for d from 1 to 40 do q[d+1] := c; Q := Q+c*x^(d+1); t0 := mul((1-x^j)^(-q[j]),j=1..d+1); t01 := series(t0,x,d+2); t05 := series(2*Q +1-x+x^2 -t01, x, d+2); t1 := coeff(t05,x,d+1); t2 := solve(t1,c); q[d+1] := t2; Q := subs(c=t2,Q); Q := series(Q,x,d+2); od: A058385 := n->coeff(Q,x,n);
  • Mathematica
    max = 31; f[x_] := Sum[a[k]*x^k, {k, 0, max}]; a[0] = 0; a[1] = 1; a[2] = 0; a[3] = 1; se = Series[ 1 - x + x^2 + 2*f[x] - Product[(1 - x^j)^(-a[j]), {j, 1, max}], {x, 0, max}]; sol = Solve[ Thread[ CoefficientList[ se, x] == 0]]; A058385 = Table[a[n], {n, 0, max}] /. First[sol] (* Jean-François Alcover, Dec 27 2011, after g.f. *)
    terms = 32; A[] = 0; Do[A[x] = (1/2)*(-1 + x - x^2 + Product[(1 - x^j)^(-Ceiling[Coefficient[A[x], x, j]]), {j, 1,  terms}]) + O[x]^ terms // Normal, 4*terms]; CoefficientList[A[x] + O[x]^terms, x] (* Jean-François Alcover, Jan 10 2018 *)

Formula

G.f. satisfies 1 - x + x^2 + 2*A(x) = Product_{j>=1} (1-x^j)^(-a(j)).

A058534 A 3-way generalization of series-parallel networks with n unlabeled edges.

Original entry on oeis.org

0, 1, 3, 6, 15, 36, 99, 270, 783, 2298, 6936, 21204, 65895, 206862, 656253, 2098602, 6761028, 21917364, 71450229, 234070806, 770216253, 2544458592, 8435990916, 28060099692, 93612265143, 313153860210, 1050194570445, 3530080085868
Offset: 0

Views

Author

N. J. A. Sloane, Dec 24 2000

Keywords

Comments

Compare the combstruct construction here with that for A000084.

Crossrefs

Programs

  • Maple
    spec := [ N, {N=Union(Z,S,P,Q), S=Set(Union(Z,P),card>=2), P=Set(Union(Z,Q),card>=2), Q=Set(Union(Z,S),card>=2)} ]; [seq(combstruct[count](spec,size=n), n=0..40)]; # N = A058534, S=A000669

A363065 Number of Laplacian integral graphs on n vertices.

Original entry on oeis.org

1, 2, 4, 10, 24, 70, 188, 553, 1721, 5716
Offset: 1

Views

Author

Nathaniel Johnston, May 16 2023

Keywords

Comments

A (simple, undirected) graph is called Laplacian integral if all eigenvalues of its Laplacian matrix are integers. The corresponding sequence that uses the adjacency matrix instead of the Laplacian matrix is A077027.
Since every cograph is Laplacian integral, a(n) >= A000084(n).

Examples

			For n <= 3, all graphs are Laplacian integral, so a(n) = A000088(n) when n <= 3.
There is exactly one graph on 4 vertices that is not Laplacian integral: the path P_4, which has Laplacian matrix
   1 -1  0  0
  -1  2 -1  0
   0 -1  2 -1
   0  0 -1  1
which has eigenvalues 0, 2, 2-sqrt(2), and 2+sqrt(2), which are not all integers.
		

Crossrefs

Cf. A000084, A000088, A077027, A363064 (connected graphs only).

Extensions

a(10) from M. A. Achterberg, May 26 2023
Previous Showing 21-30 of 44 results. Next