A058381
Number of series-parallel networks with n labeled edges, multiple edges not allowed.
Original entry on oeis.org
0, 1, 1, 4, 20, 156, 1472, 17396, 239612, 3827816, 69071272, 1394315088, 31081310944, 758901184432, 20135117147056, 576927779925568, 17752780676186432, 583910574851160000, 20443098012485430272, 759064322969950283072, 29793617955495321025472
Offset: 0
-
max=19; f[x_] := -2*ProductLog[-Sqrt[1+x]/(2*Sqrt[E])]-1;
CoefficientList[Series[f[x], {x, 0, max}], x]*Range[0, max]! (* Jean-François Alcover, May 21 2012, after Vladeta Jovovic *)
-
a(n):=sum((sum((m+k-1)!*sum(((-1)^j*sum((2^(j-l)*(-1)^l *stirling1(m-l+j-1,j-l))/(l!*(m-l+j-1)!),l,0,j))/(k-j)!,j,0,k),k,0,m-1)) *stirling1(n,m),m,1,n); /* Vladimir Kruchinin, Feb 17 2012 */
A058380
Essentially series series-parallel networks with n labeled edges, multiple edges not allowed.
Original entry on oeis.org
0, 0, 1, 1, 13, 66, 796, 8338, 122326, 1893748, 34717076, 695343144, 15560613872, 379211091416, 10070672083928, 288420300817184, 8877044175277216, 291944826030636000, 10221726849956763136, 379528960298122277536, 14896869800297864928736
Offset: 0
-
CoefficientList[Series[-1/2 - Log[1+x]/2 - LambertW[-E^(-1/2)*Sqrt[1+x]/2], {x, 0, 15}], x]* Range[0, 15]! (* Vaclav Kotesovec, Mar 11 2014 *)
A003431
Number of isomorphism classes of connected irreducible posets with n labeled points.
Original entry on oeis.org
1, 1, 0, 0, 1, 12, 104, 956, 10037, 126578, 1971005, 38569954, 958347642, 30400603560, 1234260982770, 64187360439352, 4275470549123119
Offset: 0
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- S. R. Finch, Series-parallel networks
- S. R. Finch, Series-parallel networks, July 7, 2003. [Cached copy, with permission of the author]
- R. P. Stanley, Enumeration of posets generated by disjoint unions and ordinal sums, Proc. Amer. Math. Soc. 45 (1974), 295-299.
- R. P. Stanley, Letter to N. J. A. Sloane, c. 1991
- J. A. Wright, Letter to N. J. A. Sloane, Apr 06 1972, listing 18 sequences
- Index entries for sequences related to posets
A006349
Related to series-parallel networks.
Original entry on oeis.org
1, 5, 13, 45, 121, 413, 1261, 4221, 13801, 46365, 155497, 527613, 1792805, 6126293, 20986153, 72121853, 248396793, 857416949, 2964896877, 10269596445, 35622421561, 123728022269, 430254861945, 1497796774077, 5219231003621
Offset: 1
- Z. A. Lomnicki, Two-terminal series-parallel networks, Adv. Appl. Prob., 4 (1972), 109-150.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
A006350
Related to series-parallel networks.
Original entry on oeis.org
0, 1, 7, 27, 101, 337, 1151, 3843, 12965, 43773, 148529, 505605, 1727771, 5920823, 20345445, 70073901, 241849929, 836230109, 2896104951, 10044664507, 34884102385, 121293088909, 422196245641, 1471030361069, 5130057477187, 17905427995239
Offset: 1
- Z. A. Lomnicki, Two-terminal series-parallel networks, Adv. Appl. Prob., 4 (1972), 109-150.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
A058387
Number of series-parallel networks with n unlabeled edges, multiple edges not allowed.
Original entry on oeis.org
0, 1, 1, 2, 4, 8, 18, 40, 94, 224, 548, 1356, 3418, 8692, 22352, 57932, 151312, 397628, 1050992, 2791516, 7447972, 19950628, 53635310, 144664640, 391358274, 1061628772, 2887113478, 7869761108, 21497678430, 58841838912, 161356288874
Offset: 0
From _Andrew Howroyd_, Dec 22 2020: (Start)
In the following examples, elements in series are juxtaposed and elements in parallel are separated by '|'. The unit element (an edge) is denoted by 'o'.
a(1) = 1: (o).
a(2) = 1: (oo).
a(3) = 2: (ooo), (o|oo).
a(4) = 4: (oooo), (o(o|oo)), (o|ooo), (oo|oo).
a(5) = 8: (ooooo), (oo(o|oo)), (o(o|ooo)), (o(oo|oo)), (o|oooo), (o|o(o|oo)), (oo|ooo), (o|oo|oo).
(End)
- Andrew Howroyd, Table of n, a(n) for n = 0..500
- Steven R. Finch, Series-parallel networks
- Steven R. Finch, Series-parallel networks, July 7, 2003. [Cached copy, with permission of the author]
- John W. Moon, Some enumerative results on series-parallel networks, Annals Discrete Math., 33 (1987), 199-226 (the sequence v_n).
- Index entries for sequences mentioned in Moon (1987)
A000084 is the case that multiple edges are allowed.
A058381 is the case that edges are labeled.
A339290 is the case that order is significant in series configurations.
-
EulerT(v)={Vec(exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1, -#v)}
seq(n)={my(s=p=vector(n)); p[1]=1; for(n=2, n, s[n]=EulerT(p[1..n])[n]; p[n]=vecsum(EulerT(s[1..n])[n-1..n])-s[n]); concat([0], p+s)} \\ Andrew Howroyd, Dec 22 2020
A058540
Another 3-way generalization of series-parallel networks with n unlabeled edges.
Original entry on oeis.org
0, 1, 3, 9, 36, 144, 651, 3015, 14634, 72654, 369063, 1904985, 9971889, 52788393, 282161025, 1520597895, 8253281871, 45075359277, 247534382298, 1365994896264, 7571065357620, 42127865408028, 235246997219400, 1317894484506336
Offset: 0
-
spec := [ N, {N=Union(Z,S,P,Q), S=Set(Union(Z,P,Q),card>=2), P=Set(Union(Z,S,Q),card>=2), Q=Set(Union(Z,S,P),card>=2)} ]; [seq(combstruct[count](spec,size=n), n=0..40)]; # N=A058540, S=A058371
A058385
Number of essentially parallel series-parallel networks with n unlabeled edges, multiple edges not allowed.
Original entry on oeis.org
0, 1, 0, 1, 2, 4, 9, 20, 47, 112, 274, 678, 1709, 4346, 11176, 28966, 75656, 198814, 525496, 1395758, 3723986, 9975314, 26817655, 72332320, 195679137, 530814386, 1443556739, 3934880554, 10748839215, 29420919456, 80678144437, 221618678694
Offset: 0
- Vaclav Kotesovec, Table of n, a(n) for n = 0..500 (using data from A058387)
- Steven R. Finch, Series-parallel networks
- Steven R. Finch, Series-parallel networks, July 7, 2003. [Cached copy, with permission of the author]
- Ji Li, Combinatorial Logarithm and Point-Determining Cographs, Electronic Journal of Combinatorics, 19 (3) (2012), #P8.
- John W. Moon, Some enumerative results on series-parallel networks, Annals Discrete Math., 33 (1987), 199-226 (the sequence q_n).
- Wei Wang and Ximei Huang, Almost all cographs have a cospectral mate, arXiv:2507.16730 [math.CO], 2025. See p. 6.
- Index entries for sequences mentioned in Moon (1987)
-
Q := x; q[1] := 1; for d from 1 to 40 do q[d+1] := c; Q := Q+c*x^(d+1); t0 := mul((1-x^j)^(-q[j]),j=1..d+1); t01 := series(t0,x,d+2); t05 := series(2*Q +1-x+x^2 -t01, x, d+2); t1 := coeff(t05,x,d+1); t2 := solve(t1,c); q[d+1] := t2; Q := subs(c=t2,Q); Q := series(Q,x,d+2); od: A058385 := n->coeff(Q,x,n);
-
max = 31; f[x_] := Sum[a[k]*x^k, {k, 0, max}]; a[0] = 0; a[1] = 1; a[2] = 0; a[3] = 1; se = Series[ 1 - x + x^2 + 2*f[x] - Product[(1 - x^j)^(-a[j]), {j, 1, max}], {x, 0, max}]; sol = Solve[ Thread[ CoefficientList[ se, x] == 0]]; A058385 = Table[a[n], {n, 0, max}] /. First[sol] (* Jean-François Alcover, Dec 27 2011, after g.f. *)
terms = 32; A[] = 0; Do[A[x] = (1/2)*(-1 + x - x^2 + Product[(1 - x^j)^(-Ceiling[Coefficient[A[x], x, j]]), {j, 1, terms}]) + O[x]^ terms // Normal, 4*terms]; CoefficientList[A[x] + O[x]^terms, x] (* Jean-François Alcover, Jan 10 2018 *)
A058534
A 3-way generalization of series-parallel networks with n unlabeled edges.
Original entry on oeis.org
0, 1, 3, 6, 15, 36, 99, 270, 783, 2298, 6936, 21204, 65895, 206862, 656253, 2098602, 6761028, 21917364, 71450229, 234070806, 770216253, 2544458592, 8435990916, 28060099692, 93612265143, 313153860210, 1050194570445, 3530080085868
Offset: 0
-
spec := [ N, {N=Union(Z,S,P,Q), S=Set(Union(Z,P),card>=2), P=Set(Union(Z,Q),card>=2), Q=Set(Union(Z,S),card>=2)} ]; [seq(combstruct[count](spec,size=n), n=0..40)]; # N = A058534, S=A000669
A363065
Number of Laplacian integral graphs on n vertices.
Original entry on oeis.org
1, 2, 4, 10, 24, 70, 188, 553, 1721, 5716
Offset: 1
For n <= 3, all graphs are Laplacian integral, so a(n) = A000088(n) when n <= 3.
There is exactly one graph on 4 vertices that is not Laplacian integral: the path P_4, which has Laplacian matrix
1 -1 0 0
-1 2 -1 0
0 -1 2 -1
0 0 -1 1
which has eigenvalues 0, 2, 2-sqrt(2), and 2+sqrt(2), which are not all integers.
Comments