cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 31 results. Next

A091403 Numbers n such that genus of group Gamma_0(n) is 1.

Original entry on oeis.org

11, 14, 15, 17, 19, 20, 21, 24, 27, 32, 36, 49
Offset: 1

Views

Author

N. J. A. Sloane, Mar 02 2004

Keywords

Comments

I assume it is known that there are no further terms? A reference for this would be nice.
Available conductors for modular elliptic curves genus 1. [From Artur Jasinski, Jun 24 2010]

References

  • B. Schoeneberg, Elliptic Modular Functions, Springer-Verlag, NY, 1974, p. 103.
  • G. Shimura, Introduction to the Arithmetic Theory of Automorphic Functions, Princeton, 1971, see Prop. 1.40 and 1.43.

Crossrefs

Programs

  • Mathematica
    a89[n_] := a89[n] = Product[{p, e} = pe; Which[p < 3 && e == 1, 1, p == 2 && e > 1, 0, Mod[p, 4] == 1, 2, Mod[p, 4] == 3, 0, True, a89[p^e]], {pe, FactorInteger[n]}];
    a86[n_] := a86[n] = Product[{p, e} = pe; Which[p == 1 || p == 3 && e == 1, 1, p == 3 && e > 1, 0, Mod[p, 3] == 1, 2, Mod[p, 3] == 2, 0, True, a86[p^e]], {pe, FactorInteger[n]}];
    a1615[n_] := n Sum[MoebiusMu[d]^2/d, {d, Divisors[n]}];
    a1616[n_] := Sum[EulerPhi[GCD[ d, n/d]], {d, Divisors[n]}];
    a1617[n_] := 1 + a1615[n]/12 - a89[n]/4 - a86[n]/3 - a1616[n]/2;
    Position[Array[a1617, 100], 1] // Flatten (* Jean-François Alcover, Oct 18 2018 *)

Formula

Numbers n such that A001617(n) = 1.

A054728 a(n) is the smallest level N such that genus of modular curve X_0(N) is n (or -1 if no such curve exists).

Original entry on oeis.org

1, 11, 22, 30, 38, 42, 58, 60, 74, 66, 86, 78, 106, 105, 118, 102, 134, 114, 223, 132, 166, 138, 188, 156, 202, 168, 214, 174, 236, 186, 359, 204, 262, 230, 278, 222, 298, 240, 314, 246, 326, 210, 346, 270, 358, 282, 557, 306, 394, 312, 412, 318
Offset: 0

Views

Author

Janos A. Csirik, Apr 21 2000

Keywords

Comments

a(150) = -1, a(n) > 0 for 0<=n<=149.
a(9999988) = 119999861 is the largest value in the first 1+10^7 terms of the sequence. - Gheorghe Coserea, May 24 2016

References

  • J. A. Csirik, The genus of X_0(N) is not 150, preprint, 2000.

Crossrefs

Programs

  • Mathematica
    a1617[n_] := If[n<1, 0, 1+Sum[MoebiusMu[d]^2 n/d/12 - EulerPhi[GCD[d, n/d]]/2, {d, Divisors[n]}] - Count[(#^2 - # + 1)/n& /@ Range[n], ?IntegerQ]/3 - Count[(#^2+1)/n& /@ Range[n], ?IntegerQ]/4];
    seq[n_] := Module[{inv, bnd}, inv = Table[-1, {n+1}]; bnd = 12n + 18 Floor[Sqrt[n]] + 100; For[k = 1, k <= bnd, k++, g = a1617[k]; If[g <= n && inv[[g+1]] == -1, inv[[g+1]] = k]]; inv];
    seq[51] (* Jean-François Alcover, Nov 20 2018, after Gheorghe Coserea and Michael Somos in A001617 *)
  • PARI
    A000089(n) = {
      if (n%4 == 0 || n%4 == 3, return(0));
      if (n%2 == 0, n \= 2);
      my(f = factor(n), fsz = matsize(f)[1]);
      prod(k = 1, fsz, if (f[k,1] % 4 == 3, 0, 2));
    };
    A000086(n) = {
      if (n%9 == 0 || n%3 == 2, return(0));
      if (n%3 == 0, n \= 3);
      my(f = factor(n), fsz = matsize(f)[1]);
      prod(k = 1, fsz, if (f[k,1] % 3 == 2, 0, 2));
    };
    A001615(n) = {
      my(f = factor(n), fsz = matsize(f)[1],
         g = prod(k=1, fsz, (f[k,1]+1)),
         h = prod(k=1, fsz, f[k,1]));
      return((n*g)\h);
    };
    A001616(n) = {
      my(f = factor(n), fsz = matsize(f)[1]);
      prod(k = 1, fsz, f[k,1]^(f[k,2]\2) + f[k,1]^((f[k,2]-1)\2));
    };
    A001617(n) = 1 + A001615(n)/12 - A000089(n)/4 - A000086(n)/3 - A001616(n)/2;
    seq(n) = {
      my(inv = vector(n+1,g,-1), bnd = 12*n + 18*sqrtint(n) + 100, g);
      for (k = 1, bnd, g = A001617(k);
           if (g <= n && inv[g+1] == -1, inv[g+1] = k));
      return(inv);
    };
    seq(51)  \\ Gheorghe Coserea, May 21 2016

Formula

A001617(a(A001617(n))) = A001617(n) and a(A054729(n)) = -1 for all n>=1. - Gheorghe Coserea, May 22 2016

A091404 Numbers n such that genus of group Gamma_0(n) is 2.

Original entry on oeis.org

22, 23, 26, 28, 29, 31, 37, 50
Offset: 1

Views

Author

N. J. A. Sloane, Mar 02 2004

Keywords

Comments

I assume it is known that there are no further terms? A reference for this would be nice.

References

  • B. Schoeneberg, Elliptic Modular Functions, Springer-Verlag, NY, 1974, p. 103.
  • G. Shimura, Introduction to the Arithmetic Theory of Automorphic Functions, Princeton, 1971, see Prop. 1.40 and 1.43.

Crossrefs

Programs

  • Mathematica
    a89[n_] := a89[n] = Product[{p, e} = pe; Which[p < 3 && e == 1, 1, p == 2 && e > 1, 0, Mod[p, 4] == 1, 2, Mod[p, 4] == 3, 0, True, a89[p^e]], {pe, FactorInteger[n]}];
    a86[n_] := a86[n] = Product[{p, e} = pe; Which[p == 1 || p == 3 && e == 1, 1, p == 3 && e > 1, 0, Mod[p, 3] == 1, 2, Mod[p, 3] == 2, 0, True, a86[p^e]], {pe, FactorInteger[n]}];
    a1615[n_] := n Sum[MoebiusMu[d]^2/d, {d, Divisors[n]}];
    a1616[n_] := Sum[EulerPhi[GCD[d, n/d]], {d, Divisors[n]}];
    a1617[n_] := 1 + a1615[n]/12 - a89[n]/4 - a86[n]/3 - a1616[n]/2;
    Position[Array[a1617, 100], 2] // Flatten (* Jean-François Alcover, Oct 19 2018 *)

Formula

Numbers n such that A001617(n) = 2.

A295819 Number of nonnegative solutions to (x,y) = 1 and x^2 + y^2 = n.

Original entry on oeis.org

0, 2, 1, 0, 0, 2, 0, 0, 0, 0, 2, 0, 0, 2, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 2, 2, 0, 0, 2, 0, 0, 0, 0, 2, 0, 0, 2, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 2, 0, 0, 0, 0, 2, 0, 0, 2, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 2, 2, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 4, 0, 0
Offset: 0

Views

Author

Seiichi Manyama, Nov 28 2017

Keywords

Examples

			a(1) = 2;
(1,0) = 1 and 1^2 + 0^2 =  1.
(0,1) = 1 and 0^2 + 1^2 =  1.
a(2) = 1;
(1,1) = 1 and 1^2 + 1^2 =  2. ->  1^2 +  1^2 == 1^2 + 1 == 0 mod  2.
a(5) = 2;
(2,1) = 1 and 2^2 + 1^2 =  5. ->  2^2 +  1^2 == 2^2 + 1 == 0 mod  5.
(1,2) = 1 and 1^2 + 2^2 =  5. ->  3^2 +  6^2 == 3^2 + 1 == 0 mod  5.
a(10) = 2;
(3,1) = 1 and 3^2 + 1^2 = 10. ->  3^2 +  1^2 == 3^2 + 1 == 0 mod 10.
(1,3) = 1 and 1^2 + 3^2 = 10. ->  7^2 + 21^2 == 7^2 + 1 == 0 mod 10.
a(13) = 2;
(3,2) = 1 and 3^2 + 2^2 = 13. -> 21^2 + 14^2 == 8^2 + 1 == 0 mod 13.
(2,3) = 1 and 2^2 + 3^2 = 13. -> 18^2 + 27^2 == 5^2 + 1 == 0 mod 13.
		

Crossrefs

Cf. A006278.
Similar sequences: A000010, A000925, A295820, A295848, A295976.
A000089 is essentially the same sequence.

Programs

  • Mathematica
    a[n_] := Sum[j = Sqrt[n - i^2] // Floor; Boole[GCD[i, j] == 1 && i^2 + j^2 == n], {i, 0, Sqrt[n]}];
    Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Jul 05 2018, after Andrew Howroyd *)
  • PARI
    a(n) = {sum(i=0, sqrtint(n), my(j=sqrtint(n-i^2)); gcd(i,j)==1 && i^2+j^2==n)} \\ Andrew Howroyd, Dec 12 2017

Formula

a(n) = A000089(n) for n >= 2.
a(A006278(n)) = 2^n for n >= 1.

A304651 Number of coprime pairs (x,y) with x^2 + y^2 <= n.

Original entry on oeis.org

0, 4, 8, 8, 8, 16, 16, 16, 16, 16, 24, 24, 24, 32, 32, 32, 32, 40, 40, 40, 40, 40, 40, 40, 40, 48, 56, 56, 56, 64, 64, 64, 64, 64, 72, 72, 72, 80, 80, 80, 80, 88, 88, 88, 88, 88, 88, 88, 88, 88, 96, 96, 96, 104, 104, 104, 104, 104, 112, 112, 112, 120, 120, 120, 120
Offset: 0

Views

Author

Seiichi Manyama, May 26 2018

Keywords

Examples

			a(2) = 8 counts (x,y) = (-1,-1), (-1,0), (-1,1), (0,-1), (0,1), (1,-1), (1,0) and (1,1).
		

Crossrefs

Programs

  • Mathematica
    a89[n_] := a89[n] = Product[{p, e} = pe; Which[p < 3 && e == 1, 1, p == 2 && e > 1, 0, Mod[p, 4] == 1, 2, Mod[p, 4] == 3, 0, True, a89[p^e]], {pe, FactorInteger[n]}];
    a[n_] := a[n] = If[n == 0, 0, a[n-1] + 4 a89[n]];
    Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Aug 02 2023 *)

Formula

a(n) = a(n-1) + 4*A000089(n) for n > 0.

A305117 a(n) = A304651(n)/4.

Original entry on oeis.org

0, 1, 2, 2, 2, 4, 4, 4, 4, 4, 6, 6, 6, 8, 8, 8, 8, 10, 10, 10, 10, 10, 10, 10, 10, 12, 14, 14, 14, 16, 16, 16, 16, 16, 18, 18, 18, 20, 20, 20, 20, 22, 22, 22, 22, 22, 22, 22, 22, 22, 24, 24, 24, 26, 26, 26, 26, 26, 28, 28, 28, 30, 30, 30, 30, 34, 34, 34, 34, 34, 34
Offset: 0

Views

Author

Seiichi Manyama, May 26 2018

Keywords

Crossrefs

Programs

  • Mathematica
    a89[n_] := a89[n] = Product[{p, e} = pe; Which[p < 3 && e == 1, 1, p == 2 && e > 1, 0, Mod[p, 4] == 1, 2, Mod[p, 4] == 3, 0, True, a89[p^e]], {pe, FactorInteger[n]}];
    a[n_] := a[n] = If[n == 0, 0, a[n-1] + a89[n]];
    Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Aug 02 2023 *)

Formula

a(n) = a(n-1) + A000089(n) for n > 0.

A350872 Number of coincidence site lattices of index n in square lattice.

Original entry on oeis.org

1, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0
Offset: 1

Views

Author

Andrey Zabolotskiy, Jan 20 2022

Keywords

Comments

A coincidence site lattice (CSL), or coincidence sublattice, is a full-rank sublattice arising as an intersection of the parent lattice with its copy rotated around the origin. It is necessarily primitive.
A primitive sublattice of the square lattice is a CSL if it is square (i. e., similar to the parent lattice) and has odd index.
In this sequence, any two CSLs differing by any isometry are counted as distinct.
a(n) is also the number of ordered pairs of coprime integers (p, q) with p >= 0 and q > 0 such that p^2 + q^2 = n^2.

Examples

			a(5) = 2 index-5 CSLs have bases (2, 1), (-1, 2) and (1, 2), (-2, 1).
		

Crossrefs

Cf. A031358 (nonzero quadrisection), A004613 (positions of nonzero terms), A024362, A154269, A338690, A271102.
Cf. enumeration of wider classes of sublattices of Z^2: A000203 (all sublattices), A350871 (all well-rounded sublattices), A002654 (all square sublattices), A001615 (all primitive sublattices), A000089 (all primitive square sublattices).
Cf. enumeration of CSLs in other lattices: A331140 (Z^4), A331139 (D_4), A331142 (A_4).

Programs

  • Mathematica
    csl[1] = 1;
    csl[n_] := With[{f = First@Transpose@FactorInteger@n}, If[Union@Mod[f, 4] == {1}, 2^Length@f, 0]];
    Array[csl, 87]
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i, 1]%4 == 1, 2, 0));} \\ Amiram Eldar, Oct 23 2023

Formula

Multiplicative with a(p^e) = 2 if p == 1 (mod 4), otherwise 0.
a(4*n+1) = A031358(n), other terms are 0.
a(n) = 2 * A024362(n) for n > 1.
Dirichlet convolution of A000089 and A154269.
Dirichlet convolution of A338690 and A271102.
From Amiram Eldar, Oct 23 2023: (Start)
Dirichlet g.f.: Product_{primes p == 1 (mod 4)} (1 + 1/p^s)/(1 - 1/p^s).
Sum_{k=1..n} a(k) = (1/Pi) * n + O(sqrt(n)*log(n)).
(both from Baake and Zeiner, 2017) (End)

A000095 Number of fixed points of GAMMA_0 (n) of type i.

Original entry on oeis.org

1, 2, 0, 0, 2, 0, 0, 0, 0, 4, 0, 0, 2, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 2, 4, 0, 0, 2, 0, 0, 0, 0, 4, 0, 0, 2, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 2, 0, 0, 0, 0, 4, 0, 0, 2, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 2, 4, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 4, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 2, 0, 0, 0, 0
Offset: 1

Views

Author

Keywords

Examples

			G.f. = x + 2*x^2 + 2*x^5 + 4*x^10 + 2*x^13 + 2*x^17 + 2*x^25 + 4*x^26 + 2*x^29 + ...
		

References

  • Bruno Schoeneberg, Elliptic Modular Functions, Springer-Verlag, NY, 1974, p. 101.
  • Goro Shimura, Introduction to the Arithmetic Theory of Automorphic Functions, Princeton, 1971, see p. 25, Eq. (2).

Crossrefs

Programs

  • Haskell
    a000095 n = product $ zipWith f (a027748_row n) (a124010_row n) where
       f 2 e = if e == 1 then 2 else 0
       f p _ = if p `mod` 4 == 1 then 2 else 0
    -- Reinhard Zumkeller, Mar 24 2012
    
  • Maple
    A000095 := proc(n) local b,d: if irem(n,4) = 0 then RETURN(0); else b := 1; for d from 2 to n do if irem(n,d) = 0 and isprime(d) then b := b*(1+legendre(-1,d)); fi; od; RETURN(b); fi: end;
  • Mathematica
    A000095[ 1 ] = 1; A000095[ n_Integer ] := If[ Mod[ n, 4 ]==0, 0, Fold[ #1*(1+JacobiSymbol[ -1, #2 ])&, If[ EvenQ[ n ], 2, 1 ], Select[ First[ Transpose[ FactorInteger[ n ] ] ], OddQ ] ] ]
    a[ n_] := If[ n < 1, 0, Times @@ (Which[# == 1, 1, # == 2, 2 Boole[#2 == 1], Mod[#, 4] == 1, 2, True, 0] & @@@ FactorInteger[n])]; (* Michael Somos, Nov 15 2015 *)
  • PARI
    {a(n) = my(t); if( n<=1 || n%4==0, n==1, t=1; fordiv(n, d, if( isprime(d), t *= (1 + kronecker(-1, d)))); t)}; /* Michael Somos, Jul 15 2004 */
    
  • PARI
    A000095(n)=n%3 && n%4 && n%7 && n%11 && return(prod(k=1,#n=factor(n)[,1],1+kronecker(-1,n[k]))) /* the n%4 is needed, the others only reduce execution time by 34% */ \\ M. F. Hasler, Mar 24 2012
    
  • Python
    from sympy import primefactors
    def A000095(n): return 0 if n%4==0 or (f:=primefactors(n)) and any(p%4==3 for p in f) else 2**len(f) # David Radcliffe, Aug 20 2025

Formula

a(n) is multiplicative with a(2) = 2, a(2^e) = 0 if e>1, a(p^e) = 2 if p == 1 mod 4 and a(p^e) = 0 if p == 3 mod 4. - Michael Somos, Jul 15 2004
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 2/Pi = 0.636619... (A060294). - Amiram Eldar, Oct 15 2022

Extensions

Values a(1)-a(10^4) double checked by M. F. Hasler, Mar 24 2012

A054730 Odd n such that genus of modular curve X_0(N) is never equal to n.

Original entry on oeis.org

49267, 74135, 94091, 96463, 102727, 107643, 118639, 138483, 145125, 181703, 182675, 208523, 221943, 237387, 240735, 245263, 255783, 267765, 269627, 272583, 277943, 280647, 283887, 286815, 309663, 313447, 322435, 326355, 336675, 347823, 352719
Offset: 1

Views

Author

Janos A. Csirik, Apr 21 2000

Keywords

Comments

There are 4329 odd integers in the sequence less than 10^7. - Gheorghe Coserea, May 23 2016

References

  • J. A. Csirik, The genus of X_0(N) is not 150, preprint, 2000.

Crossrefs

Programs

  • PARI
    A000089(n) = {
      if (n%4 == 0 || n%4 == 3, return(0));
      if (n%2 == 0, n \= 2);
      my(f = factor(n), fsz = matsize(f)[1]);
      prod(k = 1, fsz, if (f[k, 1] % 4 == 3, 0, 2));
    };
    A000086(n) = {
      if (n%9 == 0 || n%3 == 2, return(0));
      if (n%3 == 0, n \= 3);
      my(f = factor(n), fsz = matsize(f)[1]);
      prod(k = 1, fsz, if (f[k, 1] % 3 == 2, 0, 2));
    };
    A001615(n) = {
      my(f = factor(n), fsz = matsize(f)[1],
         g = prod(k=1, fsz, (f[k, 1]+1)),
         h = prod(k=1, fsz, f[k, 1]));
      return((n*g)\h);
    };
    A001616(n) = {
      my(f = factor(n), fsz = matsize(f)[1]);
      prod(k = 1, fsz, f[k, 1]^(f[k, 2]\2) + f[k, 1]^((f[k, 2]-1)\2));
    };
    A001617(n) = 1 + A001615(n)/12 - A000089(n)/4 - A000086(n)/3 - A001616(n)/2;
    scan(n) = {
      my(inv = vector(n+1, g, -1), bnd = 12*n + 18*sqrtint(n) + 100, g);
      for (k = 1, bnd, g = A001617(k);
           if (g <= n && inv[g+1] == -1, inv[g+1] = k));
      select(x->(x%2==1), apply(x->(x-1), Vec(select(x->x==-1, inv, 1))));
    };
    scan(400*1000)

Extensions

More terms from Gheorghe Coserea, May 23 2016
Offset corrected by Gheorghe Coserea, May 23 2016

A157224 Number of primitive inequivalent (up to Pi/2 rotation) nonsquare sublattices of square lattice of index n.

Original entry on oeis.org

0, 1, 2, 3, 2, 6, 4, 6, 6, 8, 6, 12, 6, 12, 12, 12, 8, 18, 10, 18, 16, 18, 12, 24, 14, 20, 18, 24, 14, 36, 16, 24, 24, 26, 24, 36, 18, 30, 28, 36, 20, 48, 22, 36, 36, 36, 24, 48, 28, 44, 36, 42, 26, 54, 36, 48, 40, 44, 30, 72, 30, 48, 48, 48, 40, 72, 34, 54
Offset: 1

Views

Author

N. J. A. Sloane, Feb 25 2009

Keywords

Crossrefs

Cf. A000089 (primitive square sublattices), A002654 (all square sublattices), A145392 (all sublattices), A001615, A304182.

Formula

a(n) = (A001615(n) - A000089(n))/2. - Andrey Zabolotskiy, May 09 2018

Extensions

New name and more terms from Andrey Zabolotskiy, May 09 2018
Previous Showing 11-20 of 31 results. Next