cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 61-70 of 109 results. Next

A172288 Square array A(n,k), n>=0, k>=0, read by antidiagonals: A(n,k) is the number of partitions of 2^2^n into powers of 2 less than or equal to 2^k.

Original entry on oeis.org

1, 2, 1, 2, 3, 1, 2, 4, 9, 1, 2, 4, 25, 129, 1, 2, 4, 35, 4225, 32769, 1, 2, 4, 36, 47905, 268468225, 2147483649, 1, 2, 4, 36, 222241, 733276217345, 1152921506754330625, 9223372036854775809, 1
Offset: 0

Views

Author

Alois P. Heinz, Jan 26 2011

Keywords

Comments

A(18,18) = 2797884726...4715787265 has 1420371 decimal digits and was computed by the algorithm given below.

Examples

			A(2,1) = 9, because there are 9 partitions of 2^2^2=16 into powers of 2 less than or equal to 2^1=2: [2,2,2,2,2,2,2,2], [2,2,2,2,2,2,2,1,1], [2,2,2,2,2,2,1,1,1,1], [2,2,2,2,2,1,1,1,1,1,1], [2,2,2,2,1,1,1,1,1,1,1,1], [2,2,2,1,1,1,1,1,1,1,1,1,1], [2,2,1,1,1,1,1,1,1,1,1,1,1,1], [2,1,1,1,1,1,1,1,1,1,1,1,1,1,1], [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1].
Square array A(n,k) begins:
  1,     2,         2,            2,               2,  ...
  1,     3,         4,            4,               4,  ...
  1,     9,        25,           35,              36,  ...
  1,   129,      4225,        47905,          222241,  ...
  1, 32769, 268468225, 733276217345, 751333186150401,  ...
		

Crossrefs

Main diagonal gives: A182135.

Programs

  • Maple
    b:= proc(n,j) option remember; local nn, r;
          if n<0 then 0
        elif j=0 then 1
        elif j=1 then n+1
        elif n b(2^(2^n-k), k):
    seq(seq(A(n, d-n), n=0..d), d=0..8);
  • Mathematica
    b[n_, j_] := b[n, j] = Module[{nn, r}, Which[n < 0, 0, j == 0, 1, j == 1, n+1, n < j , b[n, j] = b[n-1, j] + b[2*n, j-1] , True, nn = 1 + Floor[n]; r := n - nn; (nn-j)*Binomial[nn, j] * Sum [Binomial[j, h] /(nn - j + h) * b[j - h + r, j] *(-1)^h, {h, 0, j-1}] ] ]; a[n_, k_] := b[2^(2^n-k), k]; Table[Table[a[n, d-n] // FullSimplify, {n, 0, d}], {d, 0, 8}] // Flatten (* Jean-François Alcover, Dec 11 2013, translated from Maple *)

Formula

A(n,k) = [x^2^(2^n-1)] 1/(1-x) * 1/Product_{j=0..k-1} (1-x^(2^j)).

A183036 G.f.: exp( Sum_{n>=1} A001511(n)*2^A001511(n)*x^n/n ) where A001511(n) equals the 2-adic valuation of 2n.

Original entry on oeis.org

1, 2, 6, 10, 24, 38, 74, 110, 200, 290, 486, 682, 1096, 1510, 2314, 3118, 4650, 6182, 8946, 11710, 16616, 21522, 29886, 38250, 52328, 66406, 89394, 112382, 149496, 186610, 245086, 303562, 394814, 486066, 625686, 765306, 977112, 1188918, 1504954
Offset: 0

Views

Author

Paul D. Hanna, Dec 19 2010

Keywords

Comments

Compare to B(x), the g.f. of the binary partitions (A000123):
B(x) = exp( Sum_{n>=1} 2^A001511(n)*x^n/n ) = (1-x)^(-1)*Product_{n>=0} 1/(1 - x^(2^n)).
2^A001511(n) exactly divides 2n.

Examples

			G.f.: A(x) = 1 + 2*x + 6*x^2 + 10*x^3 + 24*x^4 + 38*x^5 + 74*x^6 +...
log(A(x)) = 2*x + 8*x^2/2 + 2*x^3/3 + 24*x^4/4 + 2*x^5/5 + 8*x^6/6 + 2*x^7/7 + 64*x^8/8 + 2*x^9/9 + 8*x^10/10 +...+ A183037(n)*x^n/n +...
		

Crossrefs

Programs

  • PARI
    {a(n)=polcoeff(exp(sum(m=1,n,valuation(2*m,2)*2^valuation(2*m,2)*x^m/m)+x*O(x^n)),n)}

Formula

G.f. satisfies: A(x) = (1-x^2)/(1-x)^2 * A(x^2)^2/A(x^4).

A187821 Number of non-squashing partitions of n into odd parts.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 4, 3, 4, 5, 6, 5, 6, 7, 9, 7, 9, 11, 12, 11, 12, 15, 17, 15, 17, 21, 22, 21, 22, 27, 29, 27, 29, 36, 36, 36, 36, 45, 47, 45, 47, 57, 58, 57, 58, 69, 73, 69, 73, 86, 88, 86, 88, 103, 109, 103, 109, 125, 130, 125, 130, 147, 157, 147, 157, 176, 184, 176, 184, 205, 220, 205, 220, 241, 256, 241, 256
Offset: 0

Views

Author

Joerg Arndt, Dec 27 2012

Keywords

Comments

A non-squashing partition of n is a partition p(1) + p(2) + ... + p(m) = n such that p(k) >= sum(j=k+1..m, p(j) ).

Examples

			The a(33) = a(35) = 27 non-squashing partitions of 33 and 35 into odd parts are
[ 1]   [ 17 9 5 1 1 ]       [ 1]   [ 19 9 5 1 1 ]
[ 2]   [ 17 9 7 ]           [ 2]   [ 19 9 7 ]
[ 3]   [ 17 11 3 1 1 ]      [ 3]   [ 19 11 3 1 1 ]
[ 4]   [ 17 11 5 ]          [ 4]   [ 19 11 5 ]
[ 5]   [ 17 13 3 ]          [ 5]   [ 19 13 3 ]
[ 6]   [ 17 15 1 ]          [ 6]   [ 19 15 1 ]
[ 7]   [ 19 7 5 1 1 ]       [ 7]   [ 21 7 5 1 1 ]
[ 8]   [ 19 7 7 ]           [ 8]   [ 21 7 7 ]
[ 9]   [ 19 9 3 1 1 ]       [ 9]   [ 21 9 3 1 1 ]
[10]   [ 19 9 5 ]           [10]   [ 21 9 5 ]
[11]   [ 19 11 3 ]          [11]   [ 21 11 3 ]
[12]   [ 19 13 1 ]          [12]   [ 21 13 1 ]
[13]   [ 21 7 3 1 1 ]       [13]   [ 23 7 3 1 1 ]
[14]   [ 21 7 5 ]           [14]   [ 23 7 5 ]
[15]   [ 21 9 3 ]           [15]   [ 23 9 3 ]
[16]   [ 21 11 1 ]          [16]   [ 23 11 1 ]
[17]   [ 23 5 3 1 1 ]       [17]   [ 25 5 3 1 1 ]
[18]   [ 23 5 5 ]           [18]   [ 25 5 5 ]
[19]   [ 23 7 3 ]           [19]   [ 25 7 3 ]
[20]   [ 23 9 1 ]           [20]   [ 25 9 1 ]
[21]   [ 25 5 3 ]           [21]   [ 27 5 3 ]
[22]   [ 25 7 1 ]           [22]   [ 27 7 1 ]
[23]   [ 27 3 3 ]           [23]   [ 29 3 3 ]
[24]   [ 27 5 1 ]           [24]   [ 29 5 1 ]
[25]   [ 29 3 1 ]           [25]   [ 31 3 1 ]
[26]   [ 31 1 1 ]           [26]   [ 33 1 1 ]
[27]   [ 33 ]               [27]   [ 35 ]
		

Crossrefs

Cf. A018819 and A000123 (non-squashing partitions, also binary partitions).
Cf. A088567 (non-squashing partitions into distinct parts)

A217553 G.f.: exp( Sum_{n>=1} 4^A001511(n) * x^n/n ), where 2^A001511(n) is the highest power of 2 that divides 2*n.

Original entry on oeis.org

1, 4, 16, 44, 128, 308, 752, 1628, 3584, 7268, 14864, 28556, 55296, 102036, 189168, 337084, 603136, 1044676, 1814288, 3064556, 5188352, 8578548, 14205936, 23041308, 37420800, 59680548, 95265552, 149620812, 235161216, 364301652, 564627952, 863725948, 1321756672
Offset: 0

Views

Author

Paul D. Hanna, Oct 30 2012

Keywords

Comments

Compare g.f. to the g.f. of binary partitions (A000123):
exp( Sum_{n>=1} 2^A001511(n) * x^n/n ).

Examples

			G.f.: A(x) = 1 + 4*x + 16*x^2 + 44*x^3 + 128*x^4 + 308*x^5 + 752*x^6 +...
where
log(A(x)) = 4^1*x + 4^2*x^2/2 + 4^1*x^3/3 + 4^4*x^4/4 + 4^1*x^5/5 + 4^2*x^6/6 + 4^1*x^7/7 + 4^4*x^8/8 + 4^1*x^9/9 + 4^2*x^10/10 + 4^1*x^11/11 + 4^4*x^12/12 +...+ 4^A001511(n)*x^n/n +...
		

Crossrefs

Programs

  • PARI
    {a(n)=polcoeff(exp(sum(m=1,n,4^valuation(2*m,2)*x^m/m)+x*O(x^n)),n)}
    for(n=0,31,print1(a(n),", "))

Formula

Self-convolution of A162581.

A281488 a(n) = -Sum_{d divides (n-2), 1 <= d < n} a(d).

Original entry on oeis.org

1, -1, -1, 0, 0, 0, -1, 1, 0, -1, 0, 1, -1, 0, 0, 1, 0, -2, -1, 3, 0, -2, 1, 2, -2, -3, 1, 4, -1, -3, 0, 5, -1, -7, 1, 7, -1, -5, 0, 6, 1, -9, -2, 11, 1, -9, -1, 8, 0, -12, 0, 15, 0, -11, -1, 13, 0, -17, 1, 18, -2, -17, 1, 17, 0, -24, 0, 28, -1, -21, 0, 22
Offset: 1

Views

Author

Andrey Zabolotskiy, Jan 22 2017

Keywords

Comments

a(1) = 1, any other choice simply adds a factor to all terms.
The even bisection of the sequence seems to behave similarly to A281487 with similar asymptotics for |a(n)|. However, the odd bisection shows oscillations with increasing intervals between crossing the zero and increasing amplitude.

Crossrefs

Cf. A007439 (same formula with overall + instead of -), A281487 (same formula with (n-1) instead of (n-2)), A000123.

Programs

  • Python
    a = [1]
    for n in range(2, 100):
       a.append(-sum(a[d-1] for d in range(1, n) if (n-2)%d == 0))
    print(a)

Formula

a(1) = 1, a(n) = -Sum_{d|(n-2), 1 <= d < n} a(d) for n>1.

A289842 Sum of products of terms in all partitions of 2*n into powers of 2.

Original entry on oeis.org

1, 3, 11, 27, 83, 195, 515, 1155, 2899, 6387, 15219, 32883, 76275, 163059, 368883, 780531, 1738259, 3653715, 8022355, 16759635, 36428371, 75765843, 163217491, 338120787, 723384915, 1493913171, 3176799827, 6542573139, 13844246099, 28447592019, 59934789203
Offset: 0

Views

Author

Seiichi Manyama, Oct 27 2017

Keywords

Examples

			n | partitions of 2*n into powers of 2                 | a(n)
--------------------------------------------------------------------------
1 | 2  , 1+1                                           | 2+1         =  3.
2 | 4  , 2+2  , 2+1+1, 1+1+1+1                         | 4+4+2+1     = 11.
3 | 4+2, 4+1+1, 2+2+2, 2+2+1+1, 2+1+1+1+1, 1+1+1+1+1+1 | 8+4+8+4+2+1 = 27.
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i, p) option remember; `if`(n=0, p,
         `if`(i<1, 0, add(b(n-j*i, i/2, p*i^j), j=0..n/i)))
        end:
    a:= n-> (t-> b(t, 2^ilog2(t), 1))(2*n):
    seq(a(n), n=0..33);  # Alois P. Heinz, Oct 27 2017
  • Mathematica
    b[n_, i_, p_] := b[n, i, p] = If[n == 0, p, If[i < 1, 0, Sum[b[n - j i, i/2, p i^j], {j, 0, n/i}]]];
    a[n_] := b[2n, 2^Floor@Log[2, 2n], 1];
    a /@ Range[0, 33] (* Jean-François Alcover, Nov 23 2020, after Alois P. Heinz *)

Formula

a(n) = [x^(2*n)] Product_{k>=0} 1/(1 - 2^k*x^(2^k)). - Ilya Gutkovskiy, Sep 10 2018
a(n) ~ c * n * 2^n, where c = 2.1343755406794500897789546611306737041750472866941557748356... - Vaclav Kotesovec, Jun 18 2019

A303666 Expansion of 1/((1 - x)*(1 - Sum_{k>=0} x^(2^k))).

Original entry on oeis.org

1, 2, 4, 7, 13, 23, 41, 72, 128, 226, 400, 706, 1248, 2204, 3894, 6877, 12149, 21459, 37907, 66957, 118275, 208919, 369037, 651863, 1151453, 2033921, 3592719, 6346167, 11209863, 19801075, 34976589, 61782572, 109132628, 192771658, 340511506, 601478868, 1062451154, 1876711698, 3315020026
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 28 2018

Keywords

Comments

Partial sums of A023359.

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; 1+
         `if`(n>0, add(a(n-2^i), i=0..ilog2(n)), 0)
        end:
    seq(a(n), n=0..50);  # Alois P. Heinz, Apr 28 2018
  • Mathematica
    nmax = 38; CoefficientList[Series[1/((1 - x) (1 - Sum[x^2^k, {k, 0, nmax}])), {x, 0, nmax}], x]
    a[0] = 1; a[n_] := a[n] = Sum[Boole[k == 2^IntegerExponent[k, 2]] a[n - k], {k, 1, n}]; Accumulate[Table[a[n], {n, 0, 38}]]

A323776 a(n) = Sum_{k = 1...n} binomial(k + 2^(n - k) - 1, k - 1).

Original entry on oeis.org

1, 3, 7, 16, 40, 119, 450, 2253, 15207, 139190, 1731703, 29335875, 677864041, 21400069232, 924419728471, 54716596051100, 4443400439075834, 495676372493566749, 76041424515817042402, 16060385520094706930608, 4674665948889147697184915
Offset: 1

Views

Author

Gus Wiseman, Jan 27 2019

Keywords

Comments

Number of multiset partitions of integer partitions of 2^(n - 1) whose parts are constant and have equal sums.

Examples

			The a(1) = 1 through a(4) = 16 partitions of partitions:
  (1)  (2)     (4)           (8)
       (11)    (22)          (44)
       (1)(1)  (1111)        (2222)
               (2)(2)        (4)(4)
               (2)(11)       (4)(22)
               (11)(11)      (22)(22)
               (1)(1)(1)(1)  (4)(1111)
                             (11111111)
                             (22)(1111)
                             (1111)(1111)
                             (2)(2)(2)(2)
                             (2)(2)(2)(11)
                             (2)(2)(11)(11)
                             (2)(11)(11)(11)
                             (11)(11)(11)(11)
                             (1)(1)(1)(1)(1)(1)(1)(1)
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[Binomial[k+2^(n-k)-1,k-1],{k,n}],{n,20}]
  • PARI
    a(n) = sum(k=1, n, binomial(k+2^(n-k)-1, k-1)); \\ Michel Marcus, Jan 28 2019

A342247 Number of partitions of n into seven powers of 2.

Original entry on oeis.org

1, 1, 1, 2, 2, 2, 3, 4, 3, 4, 4, 4, 4, 5, 4, 6, 5, 6, 6, 7, 5, 8, 6, 7, 6, 8, 5, 7, 5, 7, 6, 9, 6, 9, 7, 9, 7, 11, 8, 10, 7, 10, 7, 10, 6, 11, 8, 10, 7, 12, 7, 10, 7, 11, 7, 10, 5, 9, 5, 8, 5, 10, 7, 10, 6, 11, 9, 12, 8, 14, 9, 11, 7, 13, 8, 12, 8, 14, 10, 13, 8, 15, 9, 13
Offset: 7

Views

Author

Ilya Gutkovskiy, Mar 07 2021

Keywords

Crossrefs

A342248 Number of partitions of n into eight powers of 2.

Original entry on oeis.org

1, 1, 1, 2, 2, 2, 3, 4, 4, 4, 5, 4, 5, 5, 6, 6, 7, 6, 8, 7, 8, 8, 10, 7, 10, 8, 9, 7, 10, 7, 10, 9, 11, 9, 12, 9, 13, 11, 14, 10, 14, 10, 13, 10, 14, 11, 15, 10, 15, 12, 15, 10, 17, 11, 14, 10, 15, 9, 13, 8, 14, 10, 14, 10, 16, 11, 16, 12, 18, 14, 18, 11, 18, 13, 17, 12, 20
Offset: 8

Views

Author

Ilya Gutkovskiy, Mar 07 2021

Keywords

Crossrefs

Previous Showing 61-70 of 109 results. Next