cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 41 results. Next

A107909 Numbers having no consecutive zeros or no consecutive ones in binary representation.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 20, 21, 22, 23, 26, 27, 29, 30, 31, 32, 33, 34, 36, 37, 40, 41, 42, 43, 45, 46, 47, 53, 54, 55, 58, 59, 61, 62, 63, 64, 65, 66, 68, 69, 72, 73, 74, 80, 81, 82, 84, 85, 86, 87, 90, 91, 93, 94, 95, 106, 107, 109, 110, 111
Offset: 0

Views

Author

Reinhard Zumkeller, May 28 2005

Keywords

Comments

Union of A003754 and A003714, complement of A107911;
a(A023548(n+2)) = A052940(n+1) for n>0;
a(A001924(n)) = A000225(n) = 2^n - 1;
a(A000126(n)) = A000079(n) = 2^n for n>0;
A107910(n) = a(n+1) - a(n).

Crossrefs

Programs

  • Perl
    foreach $n(1..100){$_=sprintf("%b",$n); print "$n\n" if !m/11/||!m/00/}
    # Ivan Neretin, May 01 2016

A026646 a(n) = Sum_{i=0..n} Sum_{j=0..n} A026637(i,j).

Original entry on oeis.org

1, 3, 7, 17, 37, 79, 163, 333, 673, 1355, 2719, 5449, 10909, 21831, 43675, 87365, 174745, 349507, 699031, 1398081, 2796181, 5592383, 11184787, 22369597, 44739217, 89478459, 178956943, 357913913, 715827853, 1431655735
Offset: 0

Views

Author

Keywords

Comments

a(n) indexes the corner blocks on the Jacobsthal spiral built from blocks of unit area (using J(1) and J(2) as the sides of the first block). - Paul Barry, Mar 06 2008
Partial sums of A026644, which are the row sums of A026637. - Paul Barry, Mar 06 2008

Crossrefs

Programs

  • Magma
    [(2^(n+4) -(6*n+9+(-1)^n))/6: n in [0..40]]; // G. C. Greubel, Jul 01 2024
    
  • Mathematica
    CoefficientList[Series[(1-x^2+2x^3)/((1-x)(1-2x)(1-x^2)), {x, 0, 29}], x] (* Metin Sariyar, Sep 22 2019 *)
    LinearRecurrence[{3,-1,-3,2}, {1,3,7,17}, 41] (* G. C. Greubel, Jul 01 2024 *)
  • SageMath
    [(2^(n+4) - (-1)^n -9 - 6*n)/6 for n in range(41)] # G. C. Greubel, Jul 01 2024

Formula

G.f.: (1 -x^2 +2*x^3)/((1-x)*(1-2*x)*(1-x^2)). - Ralf Stephan, Apr 30 2004
From Paul Barry, Mar 06 2008: (Start)
a(n) = A001045(n+3) - 2*floor((n+2)/2).
a(n) = -n + Sum_{k=0..n} A001045(k+2) = A084639(n+1) - n. (End)
a(n+1) = 2*a(n) + A109613(n), a(0)=1. - Paul Curtz, Sep 22 2019

A145111 Square array A(n,k) of numbers of length n binary words with fewer than k 0-digits between any pair of consecutive 1-digits (n,k >= 0), read by antidiagonals.

Original entry on oeis.org

1, 1, 2, 1, 2, 3, 1, 2, 4, 4, 1, 2, 4, 7, 5, 1, 2, 4, 8, 11, 6, 1, 2, 4, 8, 15, 16, 7, 1, 2, 4, 8, 16, 27, 22, 8, 1, 2, 4, 8, 16, 31, 47, 29, 9, 1, 2, 4, 8, 16, 32, 59, 80, 37, 10, 1, 2, 4, 8, 16, 32, 63, 111, 134, 46, 11, 1, 2, 4, 8, 16, 32, 64, 123, 207, 222, 56, 12, 1, 2, 4, 8, 16, 32, 64, 127, 239, 384, 365, 67, 13
Offset: 0

Views

Author

Alois P. Heinz, Oct 02 2008

Keywords

Examples

			A(4,1) = 11, because 11 binary words of length 4 have fewer than 1 0-digit between any pair of consecutive 1-digits: 0000, 0001, 0010, 0100, 1000, 0011, 0110, 1100, 0111, 1110, 1111.
Square array A(n,k) begins:
  1,  1,  1,  1,  1,  1, ...
  2,  2,  2,  2,  2,  2, ...
  3,  4,  4,  4,  4,  4, ...
  4,  7,  8,  8,  8,  8, ...
  5, 11, 15, 16, 16, 16, ...
  6, 16, 27, 31, 32, 32, ...
		

Crossrefs

Columns 0-9 give: A000027(n+1), A000124, A000126(n+1), A007800(n+1), A145112, A145113, A145114, A145115, A145116, A145117.
Main diagonal gives A000079.
Cf. A141539.

Programs

  • Maple
    f:= proc(n,k) option remember; local j; if n=0 then 1 elif n<=k then 2^(n-1) else add(f(n-j, k), j=1..k) fi end: g:= proc(n,k) option remember; if n<0 then 0 else g(n-1,k) +f(n,k) fi end: A:= (n,k)-> `if`(n=0, g(0,k), A(n-1,k) +g(n-1,k)): seq(seq(A(n, d-n), n=0..d), d=0..14);
  • Mathematica
    a[n_, k_] := SeriesCoefficient[(1 - x + x^(k+1))/(1 - 3*x + 2*x^2 + x^(k+1) - x^(k+2)), {x, 0, n}]; a[0, ] = 1; Table[a[n-k, k], {n, 0, 14}, {k, n, 0, -1}] // Flatten (* _Jean-François Alcover, Jan 15 2014 *)

Formula

G.f. of column k: (1-x+x^(k+1))/(1-3*x+2*x^2+x^(k+1)-x^(k+2)).

A111639 Expansion of (3+8*x-3*x^2-2*x^3)/((x^2+4*x+1)*(x^2-2*x-1)).

Original entry on oeis.org

-3, 10, -33, 114, -403, 1450, -5281, 19394, -71619, 265450, -986241, 3670002, -13670803, 50957770, -190026433, 708824834, -2644492803, 9867263050, -36820012641, 137401810674, -512760729619, 1913577130090, -7141393334881, 26651623320002, -99464199710403
Offset: 0

Views

Author

Creighton Dement, Aug 10 2005

Keywords

Comments

In reference to the program code, the sequence of Pell numbers A000126 is given by 1kbaseseq[C*J]. A001353 is 1ibaseiseq[C*J].
Floretion Algebra Multiplication Program, FAMP Code: 2tesseq[C*J] with C = - 'j + 'k - j' + k' - 'ii' - 'ij' - 'ik' - 'ji' - 'ki' and J = + j' + k' + 1.5'ii' + .5'jj' + .5'kk' + .5e

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{-6,-8,2,1},{-3,10,-33,114},30] (* Harvey P. Dale, Jul 04 2019 *)
  • PARI
    Vec(-(3 + 8*x - 3*x^2 - 2*x^3) / ((1 + 2*x - x^2)*(1 + 4*x + x^2)) + O(x^25)) \\ Colin Barker, May 11 2019

Formula

From Colin Barker, May 11 2019: (Start)
a(n) = ((-1-sqrt(2))^(1+n) + (-1+sqrt(2))^(1+n) - 2*(-2-sqrt(3))^n - sqrt(3)*(-2-sqrt(3))^n - 2*(-2+sqrt(3))^n + sqrt(3)*(-2+sqrt(3))^n) / 2.
a(n) = -6*a(n-1) - 8*a(n-2) + 2*a(n-3) + a(n-4) for n>3. (End)

A111640 Expansion of (-1+3*x+x^2-x^3)/((x^2+4*x+1)*(x^2-2*x-1)).

Original entry on oeis.org

1, -9, 45, -195, 793, -3117, 12013, -45751, 172961, -650849, 2441917, -9144539, 34203161, -127829669, 477505565, -1783134255, 6657304833, -24851573497, 92762239373, -346229372851, 1292232479961, -4822886991709, 17999765604237, -67177262104679, 250711906290721
Offset: 0

Views

Author

Creighton Dement, Aug 10 2005

Keywords

Comments

In reference to the program code, the sequence of Pell numbers A000126 is given by 1kbaseseq[C*J]. A001353 is 1ibaseiseq[C*J].
Floretion Algebra Multiplication Program, FAMP Code: 1vesseq[C*J] with C = - 'j + 'k - j' + k' - 'ii' - 'ij' - 'ik' - 'ji' - 'ki' and J = + j' + k' + 1.5'ii' + .5'jj' + .5'kk' + .5e

Crossrefs

Programs

  • PARI
    Vec((1 - 3*x - x^2 + x^3) / ((1 + 2*x - x^2)*(1 + 4*x + x^2)) + O(x^25)) \\ Colin Barker, Apr 29 2019

Formula

a(n) = -6*a(n-1) - 8*a(n-2) + 2*a(n-3) + a(n-4) for n>3. - Colin Barker, Apr 29 2019

A111641 Expansion of -(1+x+3*x^2+x^3)/((x^2+4*x+1)*(x^2-2*x-1)).

Original entry on oeis.org

1, -5, 25, -107, 433, -1697, 6529, -24839, 93841, -352973, 1323961, -4957139, 18539041, -69282185, 258790465, -966364367, 3607837153, -13467809237, 50270219929, -187629535739, 700287673681, -2613617125553, 9754412512321, -36404592257879, 135865306871281
Offset: 0

Views

Author

Creighton Dement, Aug 10 2005

Keywords

Comments

In reference to the program code, the sequence of Pell numbers A000126 is given by 1kbaseseq[C*J]. A001353 is 1ibaseiseq[C*J].
Floretion Algebra Multiplication Program, FAMP Code: 1lestesseq[C*J] with C = - 'j + 'k - j' + k' - 'ii' - 'ij' - 'ik' - 'ji' - 'ki' and J = + j' + k' + 1.5'ii' + .5'jj' + .5'kk' + .5e

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[-(1+x+3x^2+x^3)/((x^2+4x+1)(x^2-2x-1)),{x,0,30}],x] (* or *) LinearRecurrence[{-6,-8,2,1},{1,-5,25,-107},30] (* Harvey P. Dale, Oct 12 2017 *)
  • PARI
    Vec((1 + x + 3*x^2 + x^3) / ((1 + 2*x - x^2)*(1 + 4*x + x^2)) + O(x^25)) \\ Colin Barker, Apr 29 2019

Formula

a(n) = -6*a(n-1) - 8*a(n-2) + 2*a(n-3) + a(n-4) for n>3. - Colin Barker, Apr 29 2019

A111642 Expansion of 2*(x-1)*(x+1)/((x^2+4*x+1)*(x^2-2*x-1)).

Original entry on oeis.org

2, -12, 54, -224, 890, -3452, 13198, -50016, 188498, -707916, 2652678, -9925760, 37105802, -138631292, 517742494, -1933118784, 7216615970, -26937891852, 100545928278, -375272321696, 1400607336218, -5227311479036, 19509011469358, -72809634633120, 271731700422002
Offset: 0

Views

Author

Creighton Dement, Aug 10 2005

Keywords

Comments

In reference to the program code, the sequence of Pell numbers A000126 is given by 1kbaseseq[C*J]. A001353 is 1ibaseiseq[C*J].
Floretion Algebra Multiplication Program, FAMP Code: 1ibaseseq[C*J] with C = - 'j + 'k - j' + k' - 'ii' - 'ij' - 'ik' - 'ji' - 'ki' and J = + j' + k' + 1.5'ii' + .5'jj' + .5'kk' + .5e

Crossrefs

Programs

  • PARI
    Vec(2*(1 - x)*(1 + x) / ((1 + 2*x - x^2)*(1 + 4*x + x^2)) + O(x^25)) \\ Colin Barker, Apr 29 2019

Formula

a(n) = -6*a(n-1) - 8*a(n-2) + 2*a(n-3) + a(n-4) for n>3. - Colin Barker, Apr 29 2019

A111643 Expansion of 2*(x+1)^2/((x^2+4*x+1)*(x^2-2*x-1)).

Original entry on oeis.org

-2, 8, -34, 136, -530, 2032, -7714, 29104, -109378, 410040, -1534722, 5738360, -21441682, 80083808, -299027394, 1116348896, -4167148290, 15554127592, -58053908834, 216672484584, -808662529938, 3018041612880, -11263658377442, 42036964786320, -156885101002562
Offset: 0

Views

Author

Creighton Dement, Aug 10 2005

Keywords

Comments

In reference to the program code, the sequence of Pell numbers A000126 is given by 1kbaseseq[C*J]. A001353 is 1ibaseiseq[C*J].
Floretion Algebra Multiplication Program, FAMP Code: 1baseiseq[C*J] with C = - 'j + 'k - j' + k' - 'ii' - 'ij' - 'ik' - 'ji' - 'ki' and J = + j' + k' + 1.5'ii' + .5'jj' + .5'kk' + .5e

Crossrefs

Programs

  • PARI
    Vec(-2*(1 + x)^2 / ((1 + 2*x - x^2)*(1 + 4*x + x^2)) + O(x^40)) \\ Colin Barker, May 01 2019

Formula

From Colin Barker, May 01 2019: (Start)
a(n) = (-3*(-1-sqrt(2))^(1+n) - 3*(-1+sqrt(2))^(1+n) - 9*(-2-sqrt(3))^n - 5*sqrt(3)*(-2-sqrt(3))^n - 9*(-2+sqrt(3))^n + 5*sqrt(3)*(-2+sqrt(3))^n) / 6.
a(n) = -6*a(n-1) - 8*a(n-2) + 2*a(n-3) + a(n-4) for n>3.
(End)

A306417 Number of self-conjugate set partitions of {1, ..., n}.

Original entry on oeis.org

1, 1, 0, 1, 1, 2, 7, 7, 46, 39, 321
Offset: 0

Views

Author

Gus Wiseman, Feb 14 2019

Keywords

Comments

This sequence counts set partitions fixed under Callan's conjugation operation.

Examples

			The  a(3) = 1 through a(7) = 7 self-conjugate set partitions:
  {{12}{3}}  {{13}{24}}  {{123}{4}{5}}  {{135}{246}}    {{13}{246}{57}}
                         {{13}{2}{45}}  {{124}{35}{6}}  {{15}{246}{37}}
                                        {{13}{25}{46}}  {{1234}{5}{6}{7}}
                                        {{14}{2}{356}}  {{124}{3}{56}{7}}
                                        {{14}{236}{5}}  {{134}{2}{5}{67}}
                                        {{14}{25}{36}}  {{14}{2}{3}{567}}
                                        {{145}{26}{3}}  {{14}{23}{57}{6}}
		

Crossrefs

A323952 Regular triangle read by rows where if k > 1 then T(n, k) is the number of connected subgraphs of an n-cycle with any number of vertices other than 2 through k - 1, n >= 1, 1 <= k <= n - 1. Otherwise T(n, 1) = n.

Original entry on oeis.org

1, 2, 3, 3, 7, 4, 4, 13, 9, 5, 5, 21, 16, 11, 6, 6, 31, 25, 19, 13, 7, 7, 43, 36, 29, 22, 15, 8, 8, 57, 49, 41, 33, 25, 17, 9, 9, 73, 64, 55, 46, 37, 28, 19, 10, 10, 91, 81, 71, 61, 51, 41, 31, 21, 11, 11, 111, 100, 89, 78, 67, 56, 45, 34, 23, 12, 12, 133, 121
Offset: 1

Views

Author

Gus Wiseman, Feb 10 2019

Keywords

Examples

			Triangle begins:
   1
   2   3
   3   7   4
   4  13   9   5
   5  21  16  11   6
   6  31  25  19  13   7
   7  43  36  29  22  15   8
   8  57  49  41  33  25  17   9
   9  73  64  55  46  37  28  19  10
  10  91  81  71  61  51  41  31  21  11
  11 111 100  89  78  67  56  45  34  23  12
  12 133 121 109  97  85  73  61  49  37  25  13
Row 4 counts the following connected sets:
  {1}  {1}     {1}     {1}
  {2}  {2}     {2}     {2}
  {3}  {3}     {3}     {3}
  {4}  {4}     {4}     {4}
       {12}    {123}   {1234}
       {14}    {124}
       {23}    {134}
       {34}    {234}
       {123}   {1234}
       {124}
       {134}
       {234}
       {1234}
		

Crossrefs

First column is A000027. Second column is A002061. Third column is A000290. Fourth column is A028387.

Programs

  • Mathematica
    anesw[n_,k_]:=Length[If[k==1,List/@Range[n],Union[Sort/@Select[Union[List/@Range[n],Join@@Table[Partition[Range[n],i,1,1],{i,k,n}]],UnsameQ@@#&&#!={}&]]]];
    Table[anesw[n,k],{n,0,16},{k,n}]
  • PARI
    T(n,k) = if(k==1, n, 1 + n * (n - k + 1)) \\ Andrew Howroyd, Jan 18 2023

Formula

T(n, 1) = n; T(n, k) = 1 + n * (n - k + 1).
Previous Showing 11-20 of 41 results. Next