cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 2943 results. Next

A080568 Sum of the Fibonacci numbers A000045 and the factorials A000142.

Original entry on oeis.org

1, 2, 3, 8, 27, 125, 728, 5053, 40341, 362914, 3628855, 39916889, 479001744, 6227021033, 87178291577, 1307674368610, 20922789888987, 355687428097597, 6402373705730584, 121645100408836181, 2432902008176646765, 51090942171709450946, 1124000727777607697711
Offset: 0

Views

Author

Alasdair Kergon (agk(AT)oxlug.org), Feb 21 2003

Keywords

Comments

Original puzzle was to find the next four terms after 2, 3, 8, 27, 125. The cubes were intended to mislead - providing one further term would have made the intended sequence too obvious.

References

  • Cambridge Archimedeans' Problems Drive, 2001.

Crossrefs

Programs

  • Magma
    [Factorial(n)+Fibonacci(n): n in [0..25]]; // Vincenzo Librandi, May 03 2011
    
  • Maple
    with(combstruct): with(combinat): a:=proc(m) [ZL, {ZL=Set(Cycle(Z, card>=m))}, labeled]; end: ZLL:=a(1): seq(count(ZLL, size=n)+fibonacci(n), n=0..19); # Zerinvary Lajos, Jun 11 2008
  • Mathematica
    Table[n!+Fibonacci[n],{n,0,100}] (* Vladimir Joseph Stephan Orlovsky, May 02 2011 *)
  • PARI
    vector(30, n, n--; n! + fibonacci(n)) \\ Michel Marcus, Jul 05 2015

Formula

E.g.f.: (2/sqrt(5))*exp(x/2)*sinh(sqrt(5)*x/2)+1/(1-x). - Alois P. Heinz, Jul 05 2015

A100685 Powers of factorials A000142.

Original entry on oeis.org

1, 2, 4, 6, 8, 16, 24, 32, 36, 64, 120, 128, 216, 256, 512, 576, 720, 1024, 1296, 2048, 4096, 5040, 7776, 8192, 13824, 14400, 16384, 32768, 40320, 46656, 65536, 131072, 262144, 279936, 331776, 362880, 518400, 524288, 1048576, 1679616, 1728000
Offset: 1

Views

Author

Kyle Schalm and Jonathan Sondow, Dec 08 2004

Keywords

Comments

Subsequence of A001013. Supersequence of A036740 without its first term.
Supersequence also of A046882 and A055209 without their first terms. - Jonathan Sondow and Robert G. Wilson v, Dec 19 2004

Examples

			24 = (4!)^1 and 36 = (3!)^2.
		

Crossrefs

Cf. also A046882 and A055209.
Subsequences: A000079, A000400, A009968.

Programs

  • Mathematica
    With[{ln = Log[10!]}, Table[With[{f = m!}, Table[f^j, {j, 0, Floor[ln/Log[f]]}]], {m, 2, 10}]] //Flatten //Union

Formula

Sum_{n>=1} 1/a(n) = 1 + A331373. - Amiram Eldar, Nov 21 2021

A126787 G.f.: B(x)*B(2!*x^2)*B(3!*x^3)*..., where B(x) is g.f. of A000142.

Original entry on oeis.org

1, 1, 4, 14, 66, 308, 1888, 12240, 95640, 827904, 8106960, 87387264, 1035645312, 13316300928, 184988692800, 2756878875648, 43888205438208, 742943286892800, 13326434312808960, 252448071959572992, 5036116692383428608, 105523926692032447488
Offset: 0

Views

Author

Vladeta Jovovic, Feb 18 2007

Keywords

Comments

Take each Ferrers diagram of the partitions of n, label(linearly order) the dots within each row, then linearly order any of the rows that are of equal length. - Geoffrey Critzer, Mar 21 2009

Crossrefs

Programs

  • Maple
    B:= proc(n) option remember; local x; unapply(`if`(n<=0, 1, B(n-1)(x)+ n! *x^n), x) end: BB:= proc(n) local x, d; unapply(convert(series(mul(B(floor(n/d))(d!*x^d), d=1..n), x, n+1), polynom), x) end: a:= n-> coeff(BB(n)(x), x, n): seq(a(n), n=0..25); # Alois P. Heinz, Sep 25 2008
    # second Maple program:
    b:= proc(n, i) option remember; `if`(n=0 or i=1, n!,
          add(b(n-i*j, i-1)*j!*i!^j, j=0..n/i))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..30);  # Alois P. Heinz, Oct 02 2017
  • Mathematica
    CoefficientList[Series[Product[Sum[x^(n*k) n!^k*k!, {k, 0, 20}], {n, 1, 20}], {x, 0, 20}], x] (* Geoffrey Critzer, Mar 21 2009 *)

Formula

a(n) ~ 2*n! * (1 + 1/(2*n) + 3/n^2 + 13/n^3 + 82/n^4 + 587/n^5 + 4966/n^6). - Vaclav Kotesovec, Mar 16 2015

Extensions

More terms from Alois P. Heinz, Sep 25 2008

A139003 Number of operations A000142 (i.e., x!) or A000196 (i.e., floor(sqrt(x))) needed to get n, starting with 3.

Original entry on oeis.org

1, 2, 0, 20, 4, 1, 14, 17, 31, 6, 26, 41, 35, 20, 31, 31, 19, 28, 27, 38, 21, 33, 21, 21, 26, 3, 51, 38, 28, 26, 20, 35, 36, 36, 13, 23, 27, 62, 45, 50, 45, 40, 9, 15, 31, 8, 32, 52, 36, 13, 68, 69, 57, 33, 54, 36, 46, 34, 49, 63, 56, 68, 14, 63, 23, 33, 36, 47, 43, 16, 38, 66, 38
Offset: 1

Views

Author

M. F. Hasler, Apr 09 2008

Keywords

Comments

Knuth conjectured that any number can be obtained in that way, starting from 4.
This seems also to be true using 3 as the starting value. Since 3 is the minimal possible choice, this variant could be considered to be more natural.
To ensure the sequence is well-defined, define a(n)=-1 if it is not possible to get n in the given way.
See A139004 for references and links.
In fact a single 2 is enough to get any positive integer, if Knuth's conjecture that one 4 is enough is true. From 2, (((-tan(2.))!)!)! = 5.592..., then floor, factorial gets 120, then sqrt, sqrt gives 3.162..., and floor gives 3, or negate, floor, negate gives 4. - N. J. A. Sloane, Feb 26 2025

Examples

			Representing the operation x -> floor(sqrt(x)) by "s" and x -> x! by "f",
we have:
a(1) = 1 since 1 = s3 is clearly the shortest way to obtain 1 from 3.
a(2) = 2 since 2 = sf3 is clearly the shortest way to obtain 2 from 3.
a(3) = 0 since no operation is required to get 3 which is there at the beginning.
a(5) = 4 since 5 = ssff3 is the shortest way to obtain 5 from 3.
a(6) = 1 since 6 = f3 is certainly the shortest way to get 6 from 3.
a(4) = 20 = 7+9+a(5) since 4 = ssssssfsssssssffssff3 = floor(35!^(1/2^6)), 35 = floor((5!)!^(1/2^7)).
		

Crossrefs

Cf. A139004.

Programs

  • PARI
    A139003( n, S=Set(3), LIM=10^5 )={ for( i=0,LIM, setsearch( S, n) & return(i); S=setunion( S, setunion( Set( vector( #S, j, sqrtint(eval(S[j])))), Set( vector( #S, j, if( LIM > j=eval(S[j]), j!))))))}

Formula

a(3) = 0; a(n) = min { a(k)+1 ; n^2 <= k < (n+1)^2 or k! = n }

Extensions

a(9)-a(11) from Max Alekseyev, Nov 03 2008
Corrected formula, added terms from a(12) onward. - Jon E. Schoenfield, Nov 17 2008, Nov 19 2008
Comments and example edited by Jon E. Schoenfield, Sep 15 2013

A141476 Triangle T(n,k) = A000142(n-k)*A003319(k+1) read by rows.

Original entry on oeis.org

1, 1, 1, 2, 1, 3, 6, 2, 3, 13, 24, 6, 6, 13, 71, 120, 24, 18, 26, 71, 461, 720, 120, 72, 78, 142, 461, 3447, 5040, 720, 360, 312, 426, 922, 3447, 29093, 40320, 5040, 2160, 1560, 1704, 2766, 6894, 29093, 273343, 362880, 40320, 15120, 9360, 8520, 11064, 20682
Offset: 0

Views

Author

Paul Curtz, Aug 09 2008

Keywords

Examples

			The triangle starts at row n=0 with columns 0 <= k <= n:
    1;
    1,   1;
    2,   1,   3;
    6,   2,   3,  13;
   24,   6,   6,  13,  71;
  120,  24,  18,  26,  71, 461;
		

Programs

  • Mathematica
    (* b = A003319 *) b[0]=0; b[n_] := b[n] = n! - Sum[k!*b[n-k], {k, 1, n-1}];
    T[n_, k_] := (n-k)! b[k+1]; Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Feb 18 2018 *)

Formula

Row sums: Sum_{k=0..n} T(n,k) = A000142(n+1) = (n+1)!.

Extensions

Edited and extended by R. J. Mathar, Dec 05 2008

A226718 n! mod tetrahedral(n), that is A000142(n) mod A000292(n).

Original entry on oeis.org

0, 2, 6, 4, 15, 48, 0, 0, 45, 120, 66, 168, 0, 0, 120, 288, 153, 360, 0, 0, 231, 528, 0, 0, 0, 0, 378, 840, 435, 960, 0, 0, 0, 0, 630, 1368, 0, 0, 780, 1680, 861, 1848, 0, 0, 1035, 2208, 0, 0, 0, 0, 1326, 2808, 0, 0, 0, 0, 1653, 3480, 1770, 3720, 0, 0, 0, 0, 2145, 4488
Offset: 1

Views

Author

Alex Ratushnyak, Jun 15 2013

Keywords

Crossrefs

Programs

  • Maple
    A226718 := proc(n)
        n! mod ( n*(n+1)*(n+2)/6) ;
    end proc: # R. J. Mathar, Jun 18 2013
  • Mathematica
    Table[Mod[n!, n (n + 1) (n + 2)/6], {n, 66}] (* Ivan Neretin, May 18 2015 *)
  • Python
    f = 1
    for i in range(1, 100):
        f *= i
        print(f % (i*(i+1)*(i+2)//6), end=', ')

Formula

a(n) = n! mod (n*(n+1)*(n+2)/6).
For n>4: if neither n+1 nor n+2 is prime, then a(n)=0. Otherwise, a(n)=n(n+1)/2 for odd n and a(n)=n(n+2) for even n. - Ivan Neretin, May 18 2015

A248652 Union of the factorial numbers (A000142) and the double factorials of odd numbers (A001147).

Original entry on oeis.org

1, 2, 3, 6, 15, 24, 105, 120, 720, 945, 5040, 10395, 40320, 135135, 362880, 2027025, 3628800, 34459425, 39916800, 479001600, 654729075, 6227020800, 13749310575, 87178291200, 316234143225, 1307674368000, 7905853580625, 20922789888000, 213458046676875, 355687428096000
Offset: 1

Views

Author

Olivier Gérard, Oct 10 2014

Keywords

References

  • Douglas Hoftstadter, Keynote lecture, DIMACS Workshop on Recognition of Integer Sequences, Oct. 10, 2014.

Crossrefs

See A268645 for another version.

Programs

Extensions

Revised by N. J. A. Sloane, Feb 09 2016

A277362 Self-convolution of a(n)/4^n gives factorials (A000142).

Original entry on oeis.org

1, 2, 14, 164, 2646, 53852, 1316364, 37467080, 1215510118, 44249471916, 1785942489700, 79150848980216, 3821494523507708, 199668288426274968, 11225643465179779544, 675769562728962818448, 43370783734391689628294, 2956329387192674856638668
Offset: 0

Views

Author

Vladimir Reshetnikov, Oct 10 2016

Keywords

Comments

Self-convolution of a(n) gives A047053.

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n=0, 1,
         (n!*4^n-add(a(k)*a(n-k), k=1..n-1))/2)
        end:
    seq(a(n), n=0...20);  # Alois P. Heinz, Oct 12 2016
  • Mathematica
    With[{n = 20}, Sqrt[Sum[k! (4 x)^k, {k, 0, n - 1}] + O[x]^n][[3]]]
    CoefficientList[Series[Sqrt[-Gamma[0, -1/(4*x)]/(x*E^(1/(4*x)))]/2, {x, 0, 20}], x] (* Vaclav Kotesovec, Oct 27 2021 *)

Formula

Sum_{k=0..n} a(k)/4^k * a(n-k)/4^(n-k) = n!.
a(n) ~ 2^(2*n-1) * n!. - Vaclav Kotesovec, Oct 27 2021

A280531 a(n) = A049501(A000142(n)).

Original entry on oeis.org

0, 0, 1, 2, 2, 4, 11, 16, 16, 25, 30, 64, 39, 83, 111, 139, 139, 165, 205, 242, 283, 320, 336, 474, 440, 395, 637, 655, 886, 842, 1019, 1159, 1159, 1153, 1327, 1366, 1328, 1243, 1487, 1756, 1623, 2362, 2394, 2274, 2487, 2642, 2907, 2843, 3211, 3049, 3736
Offset: 0

Views

Author

Indranil Ghosh, Jan 04 2017

Keywords

Comments

a(n) is the major index (1st definition) of n!.

Examples

			For n=4, A000142(n) = 24 and A049501(24) = 2. So a(n) = 2.
		

Crossrefs

Cf. A280062 (Major index (2nd definition) of n!).

Programs

  • Python
    import math
    def M(n):
        x=bin(int(n))[2:]
        s=0
        for i in range(1,len(x)):
            if x[i-1]=="1" and x[i]=="0":
                s+=i
        return s
    a=lambda n: M(math.factorial(n))

A289924 p-INVERT of (n!), n >= 1 (A000142, shifted), where p(S) = 1 - S - S^2.

Original entry on oeis.org

1, 4, 17, 79, 402, 2253, 14037, 98152, 774973, 6911131, 69225314, 771593257, 9470565513, 126755983488, 1834510979193, 28511931874423, 473179672441090, 8346048191981797, 155838573499885229, 3069991622444141848, 63618933765102190149, 1383222300396890185731
Offset: 0

Views

Author

Clark Kimberling, Aug 14 2017

Keywords

Comments

Suppose s = (c(0), c(1), c(2), ...) is a sequence and p(S) is a polynomial. Let S(x) = c(0)*x + c(1)*x^2 + c(2)*x^3 + ... and T(x) = (-p(0) + 1/p(S(x)))/x. The p-INVERT of s is the sequence t(s) of coefficients in the Maclaurin series for T(x). Taking p(S) = 1 - S gives the "INVERT" transform of s, so that p-INVERT is a generalization of the "INVERT" transform (e.g., A033453).
See A289780 for a guide to related sequences.

Crossrefs

Cf. A000142.

Programs

  • Mathematica
    z = 60; s = Sum[k! x^k, {k, 1, z}]; p = 1 - s - s^2;
    Drop[CoefficientList[Series[s, {x, 0, z}], x], 1]  (* A000142 shifted *)
    Drop[CoefficientList[Series[1/p, {x, 0, z}], x] , 1]  (* A289924 *)
Previous Showing 31-40 of 2943 results. Next