cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 43 results. Next

A117879 First semiprime after e^n.

Original entry on oeis.org

4, 4, 9, 21, 55, 155, 407, 1099, 2981, 8105, 22033, 59881, 162757, 442417, 1202611, 3269021, 8886117, 24154953, 65659981, 178482301, 485165203, 1318815739, 3584912849, 9744803447, 26489122131, 72004899341, 195729609431
Offset: 0

Views

Author

Jonathan Vos Post, May 02 2006

Keywords

Comments

Semiprime analog of A074496 = first prime after e^n. Lim_{n->infinity} a(n+1)/a(n) = e. There are numbers where floor(e^n) is itself a semiprime, as with floor(e^6) = 403 = 13 * 31, floor(e^15) = 3269017 = 773 * 4229, floor(e^20) = 485165195 = 5 * 97033039, floor(e^22) = 3584912846 = 2 * 1792456423, floor(e^24) = 26489122129 = 103 * 257175943.

Crossrefs

Programs

  • Mathematica
    fsa[n_]:=Module[{i=1,c=Floor[E^n]},While[PrimeOmega[c+i]!=2,i++];c+i]; Array[fsa,30,0] (* Harvey P. Dale, Oct 18 2013 *)

Formula

a(n) = Smallest semiprime > e^n. Smallest semiprime > floor(e^n). a(n) = min{s > A000149(n) and s in A001358}.

A254528 Number of decimal digits in the integer part of e^n.

Original entry on oeis.org

1, 1, 1, 2, 2, 3, 3, 4, 4, 4, 5, 5, 6, 6, 7, 7, 7, 8, 8, 9, 9, 10, 10, 10, 11, 11, 12, 12, 13, 13, 14, 14, 14, 15, 15, 16, 16, 17, 17, 17, 18, 18, 19, 19, 20, 20, 20, 21, 21, 22, 22, 23, 23, 24, 24, 24, 25, 25, 26, 26, 27, 27, 27, 28, 28, 29, 29, 30, 30, 30, 31, 31, 32, 32, 33, 33
Offset: 0

Views

Author

Robert G. Wilson v, Feb 01 2015

Keywords

Examples

			e^10 = 22026.46579480671..., so a(10) = 5.
		

Crossrefs

Cf. A001113, A072334, A091933, A092426, A092511, A092512, A092513 (see their offsets).

Programs

  • Mathematica
    f[n_] := 1 + Floor@ Log10@ Exp@ n; Array[f, 75, 0]
    Table[Sum[DigitCount[Floor[Exp[1]^k]][[n]], {n, 1, 10}], {k, 0, 150}] (* Benedict W. J. Irwin, Apr 13 2016 *)
    IntegerLength[Floor[E^Range[0,80]]] (* Harvey P. Dale, Aug 28 2017 *)
  • PARI
    a(n) = localprec(n+1); #Str(floor(exp(n))); \\ Michel Marcus, Dec 05 2020

Formula

a(n) = A055642(A000149(n)). - Amiram Eldar, May 25 2024

A045650 Numbers that cannot be expressed as k + floor(log(k)) where k is an integer.

Original entry on oeis.org

3, 9, 23, 58, 153, 409, 1103, 2988, 8112, 22036, 59885, 162766, 442426, 1202618, 3269032, 8886126, 24154969, 65659987, 178482319, 485165215, 1318815755, 3584912868, 9744803469, 26489122153, 72004899362, 195729609454
Offset: 1

Views

Author

Keywords

Comments

Complement of A212445. - Michel Marcus, Jun 30 2015

Crossrefs

Programs

Formula

Conjecture: lim n->infinity a(n) = e^n. - Ron R. King, Nov 10 2006
a(n) = floor(e^n) + n. - Nurdin N. Takenov (greanvert(AT)gmail.com), Mar 10 2007

Extensions

a(18) onward corrected by Sean A. Irvine, Mar 17 2021

A117836 Semiprimes of the form floor(e^k).

Original entry on oeis.org

403, 3269017, 485165195, 3584912846, 26489122129, 29048849665247, 639843493530054949, 114200738981568428366295718, 66631762164108958342448140502408732626873, 492345828601205839975486205911330449483779
Offset: 1

Views

Author

Jonathan Vos Post, Apr 30 2006

Keywords

Examples

			a(1) = 403 = floor(e^6) = 13 * 31.
a(2) = 3269017 = floor(e^15) = 773 * 4229.
a(3) = 485165195 = floor(e^20) = 5 * 97033039.
a(4) = 3584912846 = floor(e^22) = 2 * 1792456423.
a(5) = 26489122129 = floor(e^24) = 103 * 257175943.
		

Crossrefs

Programs

  • Mathematica
    Select[Table[Floor[Exp[k]],{k,100}],PrimeOmega[#]==2&] (* James C. McMahon, Sep 14 2024 *)

Formula

A000149 Intersection A001358.

Extensions

a(6)-a(10) from Giovanni Resta, Jun 15 2016

A119380 Remainder when the integer part of e^n is divided by the n-th prime number.

Original entry on oeis.org

0, 1, 0, 5, 5, 0, 8, 16, 7, 15, 13, 28, 23, 23, 26, 24, 57, 57, 62, 43, 70, 49, 36, 64, 84, 3, 4, 64, 83, 103, 45, 53, 49, 37, 26, 19, 75, 20, 147, 20, 134, 73, 56, 17, 31, 89, 143, 200, 103, 170, 25, 37, 159, 181, 90, 242, 16, 93, 222, 163, 57, 132, 214, 71, 164, 57, 62, 14
Offset: 1

Views

Author

Axel Harvey, Jul 24 2006

Keywords

Examples

			The sixth term is 0 because e^6 is 403.42879... and 403 is a multiple of 13, the sixth prime.
		

Crossrefs

Cf. A000149.

Programs

Formula

a(n) = floor(e^n) mod prime(n).

Extensions

More terms from Stefan Steinerberger, Jul 26 2006

A347417 Decimal expansion of Product_{k>=1} (1 + exp(-k)).

Original entry on oeis.org

1, 6, 7, 7, 9, 2, 8, 6, 8, 4, 9, 8, 9, 3, 5, 4, 1, 9, 7, 4, 3, 9, 0, 7, 2, 3, 6, 9, 8, 3, 6, 8, 4, 6, 8, 4, 6, 8, 2, 0, 8, 3, 4, 8, 7, 0, 8, 7, 6, 5, 5, 6, 4, 9, 3, 0, 4, 1, 8, 7, 3, 5, 1, 4, 4, 6, 4, 0, 5, 0, 9, 3, 3, 8, 3, 0, 6, 7, 9, 6, 9, 6, 1, 2, 1, 6, 0, 7, 6, 7, 7, 1, 7, 1, 8, 3, 9, 3, 9, 5, 3, 0, 6, 8, 3
Offset: 1

Views

Author

Christoph B. Kassir, Aug 31 2021

Keywords

Examples

			1.67792868498935419743907236983684684682083...
		

Crossrefs

Programs

  • Maple
    evalf(limit(product(1+1/exp(k), k=1..t), t=infinity), 120);
  • Mathematica
    Product[1+Exp[-k], {k, 1, Infinity}]
  • PARI
    prodinf(k=1,1+exp(-k))

A096181 Floor (e^(n / log(n))).

Original entry on oeis.org

17, 15, 17, 22, 28, 36, 46, 60, 76, 98, 125, 158, 201, 254, 320, 403, 506, 634, 793, 989, 1233, 1533, 1904, 2360, 2922, 3612, 4459, 5498, 6771, 8328, 10231, 12556, 15393, 18851, 23063, 28189, 34423, 41998, 51195, 62353, 75883, 92274, 112119, 136131
Offset: 2

Views

Author

Robert G. Wilson v, Jun 19 2004

Keywords

Crossrefs

Programs

  • Mathematica
    Table[ Floor[ E^(n/Log[n])], {n, 2, 45}]

Extensions

Definition corrected and cross-refs added by Franklin T. Adams-Watters, Jan 25 2010

A117881 First semiprime after Pi^n.

Original entry on oeis.org

4, 4, 10, 33, 106, 309, 965, 3022, 9489, 29813, 93649, 294209, 924271, 2903678, 9122173, 28658147, 90032221, 282844574, 888582413, 2791563955, 8769956797, 27551631845, 86556004193, 271923706897, 854273519921, 2683779414319
Offset: 0

Views

Author

Jonathan Vos Post, May 02 2006

Keywords

Comments

Pi and semiprime analog of A074496 First prime after e^n. Lim_{n->infinity} a(n+1)/a(n) = Pi. See also A000796 Decimal expansion of Pi. There are numbers where floor(Pi^n) is itself a semiprime, as with floor(Pi^2) = 9, floor(Pi^6) = 961 = 31^2, floor(Pi^9) = 29809 = 13 * 2293, floor(Pi^25) = 2683779414317 = 5749 * 466825433.

Examples

			a(3) = 33 because Pi^3 = 31.0062766... floor(Pi^3) = 31 is prime hence 31 + 2 = 33 is a term.
		

Crossrefs

Programs

  • Mathematica
    fsp[n_]:=Module[{k=Ceiling[Pi^n]},While[PrimeOmega[k]!=2,k++];k]; Array[fsp,30,0]

Formula

a(n) = min{s in A001358 and s > Pi^n}.

A120728 a(n) = floor(e^n) modulo 3.

Original entry on oeis.org

2, 1, 2, 0, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 2, 2, 1, 0, 2, 2, 2, 1, 1, 1, 2, 2, 0, 2, 1, 2, 0, 2, 1, 1, 2, 2, 2, 1, 0, 1, 2, 0, 2, 1, 0, 0, 0, 2, 1
Offset: 1

Views

Author

Roger L. Bagula, Aug 19 2006

Keywords

Comments

This sequence is not unique to e; there are infinitely many numbers x such that mod(floor(x^n), 3) will produce the same sequence. - Franklin T. Adams-Watters, Sep 29 2011

Crossrefs

Cf. A000149.

Programs

  • Mathematica
    Table[Mod[Floor[Exp[n]], 3], {n, 1, 50}]
    Table[Floor[Exp[n]] - 3*Floor[Exp[n]/3], {n, 1, 50}]

Formula

a(n) = A000149(n) modulo 3. - Jason Yuen, May 25 2025

A140471 Floored n-th power of Viswanath's constant.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 5, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 19, 22, 25, 28, 32, 36, 41, 46, 52, 59, 67, 76, 86, 98, 111, 125, 142, 161, 182, 206, 233, 264, 299, 339, 384, 434, 492, 557, 630, 713, 808, 914, 1035, 1172, 1326, 1502, 1700, 1924
Offset: 0

Views

Author

Alonso del Arte, Jun 28 2008

Keywords

Comments

For sufficiently large terms of a random Fibonacci sequence, the powers of Viswanath's constant approximate the absolute value of the terms in such a sequence (with a few notable exceptions).

Examples

			a(7) = 2 because V^7 is approximately 2.381734947432 and floored that is 2.
		

Crossrefs

Cf. A014217, floored n-th power of the golden ratio; A000149, floored n-th power of e; A001672, floored n-th power of Pi.

Programs

  • Mathematica
    V = 1.1319882487943; Table[Floor[V^n], {n, 0, 49}]

Formula

a(n) = floor(v^n), where v = 1.1319882487943 as given by A078416.

Extensions

More terms from Alois P. Heinz, Mar 08 2020
Previous Showing 31-40 of 43 results. Next