cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 65 results. Next

A133105 Number of partitions of n^4 into n distinct nonzero squares.

Original entry on oeis.org

1, 0, 1, 0, 21, 266, 2843, 55932, 884756, 13816633, 283194588, 5375499165, 125889124371, 3202887665805, 80542392920980, 2270543992935431, 64253268814048352, 1892633465941308859, 59116753827795287519, 1886846993941912938452
Offset: 1

Views

Author

Hugo Pfoertner, Sep 12 2007

Keywords

Examples

			a(3)=1 because there is exactly one way to express 3^4 as the sum of 3 distinct nonzero squares: 81 = 1^2 + 4^2 + 8^2.
		

Crossrefs

Cf. A133104 (number of ways to express n^4 as a sum of n nonzero squares), A133102 (number of ways to express n^3 as a sum of n distinct nonzero squares).

Programs

  • PARI
    a(i, n, k)=local(s, j); if(k==1, if(issquare(n) && n
    				

Extensions

a(10) from Herman Jamke (hermanjamke(AT)fastmail.fm), Dec 16 2007
a(11) onwards from Robert Gerbicz, May 09 2008

A143575 Numbers m such that A143574(m) = m.

Original entry on oeis.org

0, 1, 4, 5, 9, 10, 13, 16, 17, 20, 26, 29, 34, 36, 37, 40, 41, 45, 49, 52, 53, 58, 61, 64, 68, 73, 74, 80, 81, 82, 89, 90, 97, 101, 104, 106, 109, 113, 116, 117, 121, 122, 136, 137, 144, 146, 148, 149, 153, 157, 160, 164, 173, 178, 180, 181, 193, 194, 196, 197, 202
Offset: 1

Views

Author

Reinhard Zumkeller, Aug 24 2008

Keywords

Comments

A000161(a(n)) = 1.

Crossrefs

A000548 is a subsequence.

A216283 Number of nonnegative solutions to the equation x^2+5*y^2 = n.

Original entry on oeis.org

1, 0, 0, 1, 1, 1, 0, 0, 2, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 2, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 1, 0, 0, 0, 2, 1, 0, 0, 2, 0, 0, 0, 0, 2, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 3, 0, 0, 2, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 2, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1
Offset: 1

Views

Author

V. Raman, Sep 03 2012

Keywords

Comments

Records occur at 1, 9, 81, 189, 441, 1449, 3969, 12789, 13041, 30429, ... - Antti Karttunen, Aug 23 2017

Examples

			For n = 9, there are two solutions: 9 = 3^2 + 5*(0^2) = 2^2 + 5*(1^2), thus a(9) = 2.
For n = 81, there are three solutions: 81  = 9^2 + 5*(0^2) = 6^2 + 5*(3^2) = 1^2 + 5*(4^2), thus a(81) = 3.
		

Crossrefs

Cf. A033718 (all solutions x^2+5*y^2 = n).
Cf. A020669 (positions of nonzeros).

Programs

  • PARI
    N=666;  x='x+O('x^N);
    T(x)=sum(n=0,ceil(sqrt(N)),x^(n*n));
    Vec(T(x)*T(x^5))
    /* Joerg Arndt, Sep 21 2012 */
    
  • Scheme
    (define (A216283 n) (cond ((< n 2) 1) (else (let loop ((k (A000196 n)) (s 0)) (if (< k 0) s (let ((x (- n (* k k)))) (loop (- k 1) (+ s (if (zero? (modulo x 5)) (A010052 (/ x 5)) 0))))))))) ;; Antti Karttunen, Aug 23 2017

Formula

G.f. T(x) * T(x^5) where T(x) = sum(n>=0, x^(n^2) ). - Joerg Arndt, Sep 21 2012

Extensions

Examples from Antti Karttunen, Aug 23 2017

A247367 Number of ways to write n as a sum of a square and a nonsquare.

Original entry on oeis.org

0, 0, 1, 2, 1, 1, 3, 3, 2, 2, 2, 4, 4, 2, 4, 4, 3, 3, 4, 5, 3, 5, 5, 5, 5, 2, 4, 6, 6, 4, 6, 6, 5, 6, 4, 6, 5, 5, 7, 7, 5, 5, 7, 7, 7, 5, 7, 7, 7, 6, 5, 8, 6, 6, 8, 8, 8, 8, 6, 8, 8, 6, 8, 8, 7, 5, 9, 9, 7, 9, 9, 9, 8, 7, 7, 9, 9, 9, 9, 9, 7, 8, 8, 10, 10, 6
Offset: 0

Views

Author

Reinhard Zumkeller, Sep 14 2014

Keywords

Examples

			a(10) = #{0+10, 4+6} = 2;
a(11) = #{0+11, 1+10, 4+7, 9+2} = 4;
a(12) = #{0+12, 1+11, 4+8, 9+3} = 4;
a(13) = #{0+13, 1+12} = 2;
a(14) = #{0+14, 1+13, 4+10, 9+5} = 4;
a(15) = #{0+15, 1+14, 4+11, 9+6} = 4;
a(16) = #{1+15, 4+12, 9+7} = 3;
a(17) = #{0+17, 4+13, 9+8} = 3;
a(18) = #{0+18, 1+17, 4+14, 16+2} = 4;
a(19) = #{0+19, 1+18, 4+15, 9+10, 16+3} = 5;
a(20) = #{0+20, 1+19, 9+11} = 3.
		

Crossrefs

Programs

  • Haskell
    a247367 n = sum $ map ((1 -) . a010052 . (n -)) $
                      takeWhile (<= n) a000290_list
  • Mathematica
    sQ[n_] := sQ[n] = IntegerQ[Sqrt[n]];
    a[n_] := Sum[Boole[sQ[k] && !sQ[n-k] || !sQ[k] && sQ[n-k]], {k, 0, Quotient[n, 2]}];
    Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Aug 10 2022 *)

A321423 Expansion of 1/2 * Product_{0 <= i <= j} (1 + x^(i^2 + j^2)).

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 4, 4, 4, 5, 6, 7, 7, 8, 10, 11, 12, 12, 14, 16, 17, 20, 22, 25, 27, 29, 33, 36, 39, 41, 46, 52, 56, 60, 65, 72, 79, 84, 91, 100, 109, 118, 125, 136, 147, 158, 172, 185, 201, 215, 232, 251, 269, 287, 306, 331, 357, 381, 406, 436, 469, 503
Offset: 0

Views

Author

Seiichi Manyama, Nov 09 2018

Keywords

Crossrefs

Formula

G.f.: Product_{k>0} (1 + x^k)^A000161(k).

A125018 Numbers == 1 (mod 4) with a unique partition as a sum of 2 squares x^2 + y^2.

Original entry on oeis.org

1, 5, 9, 13, 17, 29, 37, 41, 45, 49, 53, 61, 73, 81, 89, 97, 101, 109, 113, 117, 121, 137, 149, 153, 157, 173, 181, 193, 197, 229, 233, 241, 245, 257, 261, 269, 277, 281, 293, 313, 317, 333, 337, 349, 353, 361, 369, 373, 389, 397, 401, 405, 409, 421, 433
Offset: 1

Views

Author

Artur Jasinski, Nov 16 2006

Keywords

Examples

			5 = 1^2 + 2^2, 9 = 0^2 + 3^2, 13 = 2^2 + 3^2, 17 = 1^2 + 4^2, 29 = 2^2 + 5^2, ... - _Michael Somos_, Jul 25 2023
		

Crossrefs

Programs

  • Mathematica
    Select[4 * Range[0, 100] + 1, Length @ PowersRepresentations[#, 2, 2] == 1 &] (* Amiram Eldar, Mar 12 2020 *)
  • PARI
    isok(n)= {if (n % 4 != 1, return(0)); A000161(n) == 1;} \\ Michel Marcus, Nov 02 2013

Extensions

More terms from Michel Marcus, Nov 02 2013

A133104 Number of partitions of n^4 into n nonzero squares.

Original entry on oeis.org

1, 0, 3, 1, 49, 732, 9659, 190169, 3225654, 61896383, 1360483727, 30969769918, 778612992660, 20749789703573, 579672756740101, 17115189938667708, 525530773660159970, 16825686497823918869, 561044904645283065043, 19368002907483932784642
Offset: 1

Views

Author

Hugo Pfoertner, Sep 11 2007

Keywords

Examples

			a(3)=3 because there are 3 ways to express 3^4 = 81 as a sum of 3 nonzero squares: 81 = 1^2 + 4^2 + 8^2 = 3^2 + 6^2 + 6^2 = 4^2 + 4^2 + 7^2.
a(4)=1 because the only way to express 4^4 = 256 as a sum of 4 nonzero squares is 256 = 8^2 + 8^2 + 8^2 + 8^2.
		

Crossrefs

Cf. A133105 (number of ways to express n^4 as a sum of n distinct nonzero squares), A133103 (number of ways to express n^3 as a sum of n nonzero squares).

Programs

  • PARI
    a(i, n, k)=local(s, j); if(k==1, if(issquare(n), return(1), return(0)), s=0; for(j=ceil(sqrt(n/k)), min(i, floor(sqrt(n-k+1))), s+=a(j, n-j^2, k-1)); return(s)) for(n=1,50, m=n^4; k=n; print1(a(m, m, k)", ") ) \\ Herman Jamke (hermanjamke(AT)fastmail.fm), Dec 16 2007

Extensions

a(9) from Herman Jamke (hermanjamke(AT)fastmail.fm), Dec 16 2007
a(10) onwards from Robert Gerbicz, May 09 2008

A216278 Number of solutions to the equation x^2+2y^2 = n with x and y > 0.

Original entry on oeis.org

0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 0, 1, 0, 0, 2, 0, 0, 0, 0, 0, 2, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 2, 0, 0, 2, 0, 0, 2, 0, 1, 0, 0, 0, 0, 0, 0, 2, 1, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 2, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 3, 0, 0, 2, 0, 0, 0, 0, 1, 2, 0, 0, 0, 0, 1, 2, 0, 0, 0, 1, 0, 0
Offset: 1

Views

Author

V. Raman, Sep 03 2012

Keywords

Crossrefs

Programs

  • Mathematica
    r[n_] := Reduce[x > 0 && y > 0 && x^2 + 2 y^2 == n, Integers];
    a[n_] := Which[rn = r[n]; rn === False, 0, Head[rn] === And, 1, Head[rn] === Or, Length[rn], True, -1];
    Table[a[n], {n, 1, 120}] (* Jean-François Alcover, Jun 24 2017 *)

A216279 Number of solutions to the equation x^2+5y^2 = n with x and y > 0.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 2, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 2, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 2, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1
Offset: 1

Views

Author

V. Raman, Sep 03 2012

Keywords

Crossrefs

Programs

  • PARI
    a(n)=sum(k=1,sqrtint((n-1)\5), issquare(n-5*k^2)) \\ Charles R Greathouse IV, Jun 06 2016
    
  • PARI
    list(lim)=my(v=vector(lim\1),t); for(y=1,sqrtint((#v-1)\5), t=5*y^2; for(x=1,sqrtint(#v-t), v[x^2+t]++)); v \\ Charles R Greathouse IV, Jun 06 2016

A216280 Number of nonnegative solutions to the equation x^4 + y^4 = n.

Original entry on oeis.org

1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

V. Raman, Sep 03 2012

Keywords

Comments

The first n with a(n) > 1 is 635318657 = 41 * 113 * 241 * 569, with a(635318657) = 2. Izadi, Khoshnam, & Nabardi show that for any n with a(n) > 1, the elliptic curve y^2 = x^3 - nx has rank at least 3. According to gp, y^2 = x^3 - 635318657x has analytic rank 4 (and first nonzero derivative around 35741.7839). - Charles R Greathouse IV, Jan 12 2017

Crossrefs

Cf. A004831 (positions of nonzero terms).

Programs

  • Mathematica
    Reap[For[n = 1, n <= 1000, n++, r = Reduce[0 <= x <= y && x^4 + y^4 == n, {x, y}, Integers]; sols = Which[r === False, 0, r[[0]] == And, 1, r[[0]] == Or, Length[r], True, Print[n, " ", r]]; If[sols != 0, Print[n, " ", sols, " ", r]]; Sow[sols]]][[2, 1]] (* Jean-François Alcover, Feb 22 2019 *)
  • PARI
    a(n)=my(t=thue(thueinit('x^4+1,1),n)); sum(i=1,#t, t[i][1]>=0 && t[i][2]>=t[i][1]) \\ Charles R Greathouse IV, Jan 12 2017
    
  • PARI
    first(n)=my(T=thueinit('x^4+1,1),v=vector(n),t); for(k=1,n, t=thue(T,k); v[k]=sum(i=1,#t, t[i][1]>=0 && t[i][2]>=t[i][1])); v \\ Charles R Greathouse IV, Jan 12 2017

Extensions

Offset added by Charles R Greathouse IV, Jan 12 2017
Previous Showing 41-50 of 65 results. Next