cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 71-80 of 153 results. Next

A056623 If n=LLgggf (see A056192) and a(n) = LL, then its complementary divisor n/LL = gggf and gcd(L^2, n/LL) = 1.

Original entry on oeis.org

1, 1, 1, 4, 1, 1, 1, 1, 9, 1, 1, 4, 1, 1, 1, 16, 1, 9, 1, 4, 1, 1, 1, 1, 25, 1, 1, 4, 1, 1, 1, 4, 1, 1, 1, 36, 1, 1, 1, 1, 1, 1, 1, 4, 9, 1, 1, 16, 49, 25, 1, 4, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 9, 64, 1, 1, 1, 4, 1, 1, 1, 9, 1, 1, 25, 4, 1, 1, 1, 16, 81, 1, 1, 4, 1, 1, 1, 1, 1, 9, 1, 4, 1, 1, 1, 4, 1, 49, 9
Offset: 1

Views

Author

Labos Elemer, Aug 08 2000

Keywords

Comments

The part of the name "Largest unitary square divisor of n" was removed because it is correct only for numbers whose odd exponents in their prime factorization are all smaller than 5. For the correct largest unitary square divisor of n see A350388. - Amiram Eldar, Jul 26 2024

Examples

			a(200) = A008833(200)/A055229(200)^2 = 100/2^2 = 25.
a(250) = A008833(250)/A055229(250)^2 = 25/5^2 = 1.
		

Crossrefs

Programs

Formula

a(n) = A008833(n)/A055229(n)^2 = K^2/g^2, which coincides with the largest square divisor iff the g-factor is 1.
Multiplicative with a(p^e)=p^e for even e, a(p)=1, a(p^e)=p^(e-3) for odd e > 1. - Vladeta Jovovic, Apr 30 2002
From Amiram Eldar, Dec 25 2023 (Start)
Dirichlet g.f.: zeta(2*s-2) * Product_{p prime} (1 + 1/p^s - 1/p^(3*s-2) + 1/p^(3*s)).
Sum_{k=1..n} a(k) ~ c * n^(3/2) / 3, where c = Product_{p prime} (1 + 1/p^(3/2) - 1/p^(5/2) + 1/p^(9/2)) = 1.81133051934001073532... . (End)
a(n) = A056622(n)^2. - Amiram Eldar, Jul 26 2024

Extensions

Name edited by Amiram Eldar, Jul 26 2024

A294876 a(n) = Product_{d|n, d>1} prime(gcd(d,n/d)).

Original entry on oeis.org

1, 2, 2, 6, 2, 8, 2, 18, 10, 8, 2, 72, 2, 8, 8, 126, 2, 200, 2, 72, 8, 8, 2, 648, 22, 8, 50, 72, 2, 128, 2, 882, 8, 8, 8, 23400, 2, 8, 8, 648, 2, 128, 2, 72, 200, 8, 2, 31752, 34, 968, 8, 72, 2, 5000, 8, 648, 8, 8, 2, 10368, 2, 8, 200, 16758, 8, 128, 2, 72, 8, 128, 2, 2737800, 2, 8, 968, 72, 8, 128, 2, 31752, 1150, 8, 2, 10368, 8, 8, 8, 648, 2, 80000, 8, 72
Offset: 1

Views

Author

Antti Karttunen, Nov 11 2017

Keywords

Crossrefs

Cf. A294877 (rgs-version of this filter).
Cf. also A293442, A293514, A293524.

Programs

  • Mathematica
    A294876[n_] := Product[Prime[GCD[d, n/d]], {d, Rest[Divisors[n]]}];
    Array[A294876, 100] (* Paolo Xausa, Feb 22 2024 *)
  • PARI
    A294876(n) = { my(m=1); fordiv(n,d,if(d>1, m *= prime(gcd(d,n/d)))); m; };

Formula

a(n) = Product_{d|n, d>1} A000040(gcd(d,n/d)).
Other identities. For all n >= 1:
1+A007814(a(n)) = A034444(n).
1+A056239(a(n)) = A055155(n).
For n > 1, A061395(a(n)) = A000188(n).

A335738 Factorize each integer m >= 2 as the product of powers of nonunit squarefree numbers with distinct exponents that are powers of 2. The sequence lists m such that the factor with the largest exponent is a power of 2.

Original entry on oeis.org

2, 4, 8, 12, 16, 20, 24, 28, 32, 40, 44, 48, 52, 56, 60, 64, 68, 76, 80, 84, 88, 92, 96, 104, 112, 116, 120, 124, 128, 132, 136, 140, 144, 148, 152, 156, 160, 164, 168, 172, 176, 184, 188, 192, 204, 208, 212, 220, 224, 228, 232, 236, 240, 244, 248, 256, 260, 264, 268, 272
Offset: 1

Views

Author

Peter Munn, Jun 20 2020

Keywords

Comments

2 is the only term not divisible by 4. All powers of 2 are present. Every term divisible by an odd square is divisible by 16, the first such being 144.
The defined factorization is unique. Every positive number is a product of at most one squarefree number (A005117), at most one square of a squarefree number (A062503), at most one 4th power of a squarefree number (A113849), at most one 8th power of a squarefree number, and so on.
Iteratively map m using A000188, until 1 is reached, as A000188^k(m), for some k >= 1. m is in the sequence if and only if the preceding number, A000188^(k-1)(m), is 2. k can be shown to be A299090(m).
Closed under squaring, but not closed under multiplication: 12 = 3^1 * 2^2 and 432 = 3^1 * 3^2 * 2^4 are in the sequence, but 12 * 432 = 5184 = 3^4 * 2^6 = 2^2 * 6^4 is not.
The asymptotic density of this sequence is Sum_{k>=0} (d(2^(k+1)) - d(2^k))/2^(2^(k+1)-1) = 0.21363357193921052068..., where d(k) = 2^(k-1)/((2^k-1)*zeta(k)) is the asymptotic density of odd k-free numbers for k >= 2, and d(1) = 0. - Amiram Eldar, Feb 10 2024

Examples

			6 is a squarefree number, so its factorization for the definition (into powers of nonunit squarefree numbers with distinct exponents that are powers of 2) is the trivial "6^1". 6^1 is therefore the factor with the largest exponent, and is not a power of 2, so 6 is not in the sequence.
48 factorizes for the definition as 3^1 * 2^4. The factor with the largest exponent is 2^4, which is a power of 2, so 48 is in the sequence.
10^100 (a googol) factorizes in this way as 10^4 * 10^32 * 10^64. The factor with the largest exponent, 10^64, is a power of 10, not a power of 2, so 10^100 is not in the sequence.
		

Crossrefs

Complement within A020725 of A335740.
A000188, A299090 are used in a formula defining this sequence.
Powers of squarefree numbers: A005117(1), A144338(1), A062503(2), A113849(4).
Subsequences: A000079\{1}, A001749, A181818\{1}, A273798.
Numbers in the even bisection of A336322.
Row m of A352780 essentially gives the defined factorization of m.

Programs

  • Mathematica
    f[p_, e_] := p^Floor[e/2]; s[1] = 1; s[n_] := Times @@ f @@@ FactorInteger[n]; Select[Range[2, 300], FixedPointList[s, #] [[-3]] == 2 &] (* Amiram Eldar, Nov 27 2020 *)
  • PARI
    is(n) = {my(e = valuation(n, 2), o = n >> e); if(e == 0, 0, if(o == 1, n > 1, floor(logint(e, 2)) > floor(logint(vecmax(factor(o)[,2]), 2))));} \\ Amiram Eldar, Feb 10 2024

Formula

{a(n)} = {m : m >= 2 and A000188^(k-1)(m) = 2, where k = A299090(m)}.
{a(n)} = {m : m >= 2 and A352780(m,e) = 2^(2^e), where e = A299090(m)-1}. - Peter Munn, Jun 24 2022

A056175 Number of nonunitary prime divisors of the central binomial coefficient C(n, floor(n/2)) (A001405).

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 0, 0, 1, 2, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 2, 2, 3, 3, 2, 2, 1, 1, 1, 2, 1, 2, 2, 2, 1, 2, 1, 1, 1, 1, 3, 3, 2, 3, 3, 3, 3, 3, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 2, 1, 2, 2, 2, 0, 1, 1, 1, 2, 2, 3, 3, 1, 2, 3, 3, 2, 2, 3, 3, 3, 3, 2, 2, 3, 3, 3, 3, 3, 4, 3, 3, 2, 2, 2, 2, 2, 2, 2
Offset: 1

Views

Author

Labos Elemer, Jul 27 2000

Keywords

Comments

Number of prime divisors of the largest square dividing A001405(n). (A prime divisor is nonunitary iff its exponent exceeds 1.)

Examples

			For n=10, binomial(10, 5) = 252 = 2*2*3*3*7 has 3 prime divisors of which only one, p=7, is unitary, while 2 and 3 are not. So a(10)=2.
For n=256, binomial(256, 128) also has only 2 prime divisors (3 and 13) whose exponents exceed 1 (4 and 2, respectively), thus a(256)=2.
		

Crossrefs

Programs

  • Mathematica
    Table[Count[FactorInteger[Binomial[n, Floor[n/2]]][[All, -1]], e_ /; e > 1], {n, 105}] (* Michael De Vlieger, Mar 05 2017 *)
  • PARI
    a(n)=omega(core(binomial(n, n\2), 1)[2]) \\ Charles R Greathouse IV, Mar 09 2017

Formula

a(n) = A001221(A000188(A001405(n))).
a(n) = A001221(A056057(n)).

Extensions

Edited by Jon E. Schoenfield, Mar 05 2017

A056192 a(n) = n divided by its characteristic cube divisor A056191.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 1, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 3, 25, 26, 1, 28, 29, 30, 31, 4, 33, 34, 35, 36, 37, 38, 39, 5, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 2, 55, 7, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 9, 73, 74, 75
Offset: 1

Views

Author

Labos Elemer, Aug 02 2000

Keywords

Comments

Different from A056552: e.g. a(16) = 16, while A056552(16) = 2.

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := If[EvenQ[e], p^e, If[e == 1, p, p^(e - 3)]]; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 06 2020 *)

Formula

a(n) = n/A055229(n)^3 = n/g^3=n/ggg and n=(LL)*(ggg)*f=L^2*g^3*f=LL*a(n)^3*f, so n=L^2*(g*3)*f, where L=A000188(n)/A055229(n), f=A055231(n), g=A055231(n).
Multiplicative with a(p^e)=p^e for even e, a(p)=p, a(p^e)=p^(e-3) for odd e>1. - Vladeta Jovovic, Apr 30 2002
Sum_{k=1..n} a(k) ~ c * n^2, where c = (Pi^2/12) * Product_{p prime} (1 - 1/p^2 - 1/p^3 + 1/p^4 + 1/p^6 - 1/p^7) = 0.4462648652... . - Amiram Eldar, Nov 13 2022

A069291 Number of square divisors of n <= sqrt(n).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 2
Offset: 1

Views

Author

Reinhard Zumkeller, Mar 14 2002

Keywords

Comments

Terms 1, 2, 3, ... occurs for the first time at 1, 16, 108, 288, 1296, 3600, 10368, 14400, ... - Antti Karttunen, Nov 20 2017

Crossrefs

Programs

  • Mathematica
    Table[DivisorSum[n, 1 &, And[IntegerQ@ Sqrt@ #, # <= Sqrt@ n] &], {n, 120}] (* Michael De Vlieger, Nov 20 2017 *)
  • PARI
    A069291(n) = sumdiv(n, d, (issquare(d)&&((d^2)<=n))); \\ Antti Karttunen, Nov 20 2017

Formula

G.f.: Sum_{k>=1} x^(k^4) / (1 - x^(k^2)). - Ilya Gutkovskiy, Apr 04 2020

Extensions

More terms from Antti Karttunen, Nov 20 2017

A069293 Sum of square divisors of n <= sqrt(n).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 5, 1, 1, 1, 5, 1, 1, 1, 5, 1, 1, 1, 5, 1, 1, 1, 5, 1, 1, 1, 5, 1, 1, 1, 5, 1, 1, 1, 5, 1, 1, 1, 5, 1, 1, 1, 5, 1, 1, 1, 5, 1, 1, 1, 5, 1, 1, 1, 5, 1, 1, 1, 5, 1, 1, 1, 5, 1, 1, 1, 5, 1, 1, 1, 5, 10, 1, 1, 5, 1, 1, 1, 5, 1, 10, 1, 5, 1, 1, 1, 5, 1, 1, 10, 5, 1, 1, 1, 5, 1
Offset: 1

Views

Author

Reinhard Zumkeller, Mar 14 2002

Keywords

Crossrefs

Programs

  • Mathematica
    Table[DivisorSum[n, # &, And[IntegerQ@ Sqrt@ #, # <= Sqrt@ n] &], {n, 105}] (* Michael De Vlieger, Nov 20 2017 *)
  • PARI
    A069293(n) = sumdiv(n, d, (issquare(d)&&((d^2)<=n))*d); \\ Antti Karttunen, Nov 20 2017

Formula

G.f.: Sum_{k>=1} k^2 * x^(k^4) / (1 - x^(k^2)). - Ilya Gutkovskiy, Apr 04 2020

Extensions

More terms from Antti Karttunen, Nov 20 2017

A295884 Number of exponents larger than 3 in the prime factorization of n.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Antti Karttunen, Nov 29 2017

Keywords

Comments

a(1296) is the first term greater than 1, and a(810000) is the first term greater than 2. - Harvey P. Dale, Dec 22 2017

Examples

			For n = 16 = 2^4, there is one exponent and it is larger than 3, thus a(16) = 1.
For n = 96 = 2^5 * 3^1, there are two exponents, and the other one is larger than 3, thus a(96) = 1.
For n = 1296 = 2^4 * 3^4, there are two exponents larger than 3, thus a(1296) = 2.
		

Crossrefs

Programs

Formula

Additive with a(p^e) = 1 when e > 3, 0 otherwise.
a(n) = A295659(n) - A295883(n).
a(n) = A056170(A062378(n)) = A056170(A003557(A003557(n))) = A001221(A003557^3(n)).
a(n) = A001221(A053164(n)) = A001221(A008835(n)).
Asymptotic mean: lim_{n->oo} (1/n) * Sum_{k=1..n} a(k) = Sum_{p prime} 1/p^4 = 0.076993... (A085964). - Amiram Eldar, Nov 01 2020

A334871 Number of steps needed to reach 1 when starting from n and iterating with A334870.

Original entry on oeis.org

0, 1, 2, 2, 4, 3, 8, 3, 3, 5, 16, 4, 32, 9, 6, 3, 64, 4, 128, 6, 10, 17, 256, 5, 5, 33, 5, 10, 512, 7, 1024, 4, 18, 65, 12, 4, 2048, 129, 34, 7, 4096, 11, 8192, 18, 7, 257, 16384, 5, 9, 6, 66, 34, 32768, 6, 20, 11, 130, 513, 65536, 8, 131072, 1025, 11, 4, 36, 19, 262144, 66, 258, 13, 524288, 5, 1048576, 2049, 7, 130
Offset: 1

Views

Author

Antti Karttunen, Jun 08 2020

Keywords

Comments

Distance of n from the root (1) in binary trees like A334860 and A334866.
Each n > 0 occurs 2^(n-1) times.
a(n) is the size of the inner lining of the integer partition with Heinz number A225546(n), which is also the size of the largest hook of the same partition. (After Gus Wiseman's Apr 02 2019 comment in A252464).

Crossrefs

Programs

  • PARI
    A334870(n) = if(issquare(n),sqrtint(n),my(c=core(n), m=n); forprime(p=2, , if(!(c % p), m/=p; break, m*=p)); (m));
    A334871(n) = { my(s=0); while(n>1,s++; n = A334870(n)); (s); };
    
  • PARI
    \\ Much faster:
    A048675(n) = { my(f = factor(n)); sum(k=1, #f~, f[k, 2]*2^primepi(f[k, 1]))/2; };
    A334871(n) = { my(s=0); while(n>1, if(issquare(n), s++; n = sqrtint(n), s += A048675(core(n)); n /= core(n))); (s); };

Formula

a(1) = 0; for n > 1, a(n) = 1 + a(A334870(n)).
a(n) = A252464(A225546(n)).
a(n) = A048675(A007913(n)) + a(A008833(n)).
For n > 1, a(n) = 1 + A048675(A007913(n)) + a(A000188(n)).
For n > 1, a(n) = A070939(A334859(n)) = A070939(A334865(n)).
For all n >= 1, a(n) >= A299090(n).
For all n >= 1, a(n) >= A334872(n).

A335740 Factorize each integer m >= 2 as the product of powers of nonunit squarefree numbers with distinct exponents that are powers of 2. The sequence lists m such that the factor with the largest exponent is not a power of 2.

Original entry on oeis.org

3, 5, 6, 7, 9, 10, 11, 13, 14, 15, 17, 18, 19, 21, 22, 23, 25, 26, 27, 29, 30, 31, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 45, 46, 47, 49, 50, 51, 53, 54, 55, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 71, 72, 73, 74, 75, 77, 78, 79, 81, 82, 83, 85, 86, 87, 89, 90
Offset: 1

Views

Author

Peter Munn, Jun 20 2020

Keywords

Comments

Every missing number greater than 2 is a multiple of 4. Every power of 2 is missing. Every positive power of every squarefree number greater than 2 is present.
The defined factorization is unique. Every positive number is a product of at most one squarefree number (A005117), at most one square of a squarefree number (A062503), at most one 4th power of a squarefree number (A113849), at most one 8th power of a squarefree number, and so on.
Iteratively map m using A000188, until 1 is reached, as A000188^k(m), for some k >= 1. m is in the sequence if and only if the preceding number, A000188^(k-1)(m), is greater than 2. k can be shown to be A299090(m).
The asymptotic density of this sequence is 1 - Sum_{k>=0} (d(2^(k+1)) - d(2^k))/2^(2^(k+1)-1) = 0.78636642806078947931..., where d(k) = 2^(k-1)/((2^k-1)*zeta(k)) is the asymptotic density of odd k-free numbers for k >= 2, and d(1) = 0. - Amiram Eldar, Feb 10 2024

Examples

			6 is a squarefree number, so its factorization for the definition (into powers of nonunit squarefree numbers with distinct exponents that are powers of 2) is the trivial "6^1". 6^1 is therefore the factor with the largest exponent, and is not a power of 2, so 6 is in the sequence.
48 factorizes for the definition as 3^1 * 2^4. The factor with the largest exponent is 2^4, which is a power of 2, so 48 is not in the sequence.
10^100 (a googol) factorizes in this way as 10^4 * 10^32 * 10^64. The factor with the largest exponent, 10^64, is a power of 10, not a power of 2, so 10^100 is in the sequence.
		

Crossrefs

Complement within A020725 of A335738.
A000188, A299090 are used in a formula defining this sequence.
Powers of squarefree numbers: A005117(1), A144338(1), A062503(2), A113849(4).
Subsequences: A042968\{1,2}, A182853, A268390.
With {1}, numbers in the odd bisection of A336322.

Programs

  • Mathematica
    f[p_, e_] := p^Floor[e/2]; s[1] = 1; s[n_] := Times @@ f @@@ FactorInteger[n]; Select[Range[2, 100], FixedPointList[s, #] [[-3]] > 2 &] (* Amiram Eldar, Nov 27 2020 *)
  • PARI
    is(n) = {my(e = valuation(n, 2), o = n >> e); if(e == 0, n > 1, if(o == 1, e < 1, floor(logint(e, 2)) <= floor(logint(vecmax(factor(o)[,2]), 2))));} \\ Amiram Eldar, Feb 10 2024

Formula

{a(n)} = {m : m >= 2 and A000188^(k-1)(m) > 2, where k = A299090(m)}.
Previous Showing 71-80 of 153 results. Next