cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 23 results. Next

A369314 Number of chiral pairs of polyominoes composed of n triangular cells of the hyperbolic regular tiling with Schläfli symbol {3,oo}.

Original entry on oeis.org

1, 2, 7, 22, 68, 214, 691, 2240, 7396, 24702, 83469, 284928, 981814, 3410990, 11939752, 42075308, 149180356, 531866972, 1905872189, 6861162880, 24805796984, 90035940942, 327988261992, 1198853954688, 4395798528850
Offset: 4

Views

Author

Robert A. Russell, Jan 19 2024

Keywords

Comments

A stereographic projection of the {3,oo} tiling on the Poincaré disk can be obtained via the Christensson link. Each member of a chiral pair is a reflection but not a rotation of the other.

Examples

			________      ________   ________      ________   ________      ________
\  /\  /\    /\  /\  /   \  /\  /\    /\  /\  /   \  /\  /\    /\  /\  /
 \/__\/__\  /__\/__\/     \/__\/__\  /__\/__\/     \/__\/__\  /__\/__\/
                           \  /          \  /           \  /  \  /
a(4)=1; a(5)=2.             \/            \/             \/    \/
		

Crossrefs

Polyominoes: A001683(n+2) (oriented), A000207 (unoriented), A208355(n-1) (achiral).

Programs

  • Mathematica
    Table[Binomial[2n,n]/(2(n+1)(n+2))-If[OddQ[n],Binomial[n,(n+1)/2]/n,Binomial[n,n/2]/(n+2)]/2+If[Divisible[n-1,3],Binomial[(2n+1)/3,(n-1)/3]/(2n+1),0],{n,4,20}]

Formula

a(n) = C(2n,2)/(2(n+1)(n+2)) - [2\(n+1)]*C(n,(n+1)/2)/(2n) - [2\n]*C(n,n/2)/(2n+4) + [3\(n-1)]*C((2n+1)/3,(n-1)/3)/(2n+1).
a(n) = A001683(n+2) - A000207(n) = (A001683(n+2) - A208355(n-1)) / 2 = A000207(n) - A208355(n-1).

A139434 Frieze pattern with 4 rows, read by diagonals.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 3, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 3, 2, 1, 1, 1, 1, 1, 1, 2, 3, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 3, 2, 1, 1, 1, 1, 1, 1, 2, 3, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 3, 2, 1, 1, 1, 1, 1, 1, 2, 3, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 3, 2, 1, 1, 1, 1, 1, 1, 2, 3, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 3, 2
Offset: 0

Views

Author

N. J. A. Sloane, Jun 09 2008

Keywords

Comments

Period 20: repeat [1, 1, 1, 1, 1, 2, 3, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 3, 2, 1]. - Wesley Ivan Hurt, Jun 05 2016
Every frieze is defined by its quiddity (the row below the row of 1's), which corresponds to the counts of triangles at vertices of a dissection of a regular polygon. The quiddity of this frieze is A135352. One can say that this frieze pattern has width 2 (not counting the rows of 1's), 4, or 5 (implying the additional row of 0's; this is also the period of the pattern and the number of vertices in the dissected polygon), depending on the convention. In any case, friezes of given width are enumerated by A000207 if we identify shifts and mirror images, otherwise by A000108. A000207(3) = 1 means that this is the only frieze of this width, and it has A000108(3) = 5 different horizontal shifts or reflections. The A000207(4) = 3 friezes having width 1 greater than this one are A139438, A139458, and one more with quiddity 1, 3, 1, 3, 1, 3, ... (currently not in the OEIS). The only frieze having width 1 less than this one has quiddity 1, 2, 1, 2, ... (A245477 can be interpreted as representing that frieze pattern). - Andrey Zabolotskiy, Jan 30 2024

Examples

			The frieze pattern is
...1 1 1 1 1 1 1 ...
....1 2 2 1 3 1 2 ...
.....1 3 1 2 2 1 3 ...
......1 1 1 1 1 1 1 ...
		

References

  • J. H. Conway and R. K. Guy, The Book of Numbers. New York: Springer-Verlag, p. 97, 1996.

Crossrefs

A380362 Triangle read by rows: T(n,k) is the number of Halin graphs on n unlabeled nodes with circuit rank k, 3 <= k <= n-1.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 2, 1, 0, 0, 0, 3, 2, 1, 0, 0, 0, 3, 6, 3, 1, 0, 0, 0, 0, 7, 11, 3, 1, 0, 0, 0, 0, 4, 24, 17, 4, 1, 0, 0, 0, 0, 0, 24, 51, 26, 4, 1, 0, 0, 0, 0, 0, 12, 89, 109, 36, 5, 1, 0, 0, 0, 0, 0, 0, 74, 265, 194, 50, 5, 1, 0, 0, 0, 0, 0, 0, 27, 371, 660, 345, 65, 6, 1
Offset: 4

Views

Author

Andrew Howroyd, Jan 25 2025

Keywords

Comments

The circuit rank is equal to the number of leaves on the tree before it is extended into a Halin graph by joining up the leaves.
The main diagonal of the graph corresponds with the wheel graphs which have the greatest circuit rank of all Halin graphs.
T(n,k) is also the number of nonequivalent dissections of a k-gon into n-k polygons by nonintersecting diagonals up to rotations and reflections.

Examples

			Triangle begins:
  n\k| 3  4  5  6  7   8   9   10  11  12  13
-----+----------------------------------------
   4 | 1;
   5 | 0, 1;
   6 | 0, 1, 1;
   7 | 0, 0, 1, 1;
   8 | 0, 0, 1, 2, 1;
   9 | 0, 0, 0, 3, 2,  1;
  10 | 0, 0, 0, 3, 6,  3,  1;
  11 | 0, 0, 0, 0, 7, 11,  3,   1;
  12 | 0, 0, 0, 0, 4, 24, 17,   4,  1;
  13 | 0, 0, 0, 0, 0, 24, 51,  26,  4,  1;
  14 | 0, 0, 0, 0, 0, 12, 89, 109, 36,  5,  1;
   ...
		

Crossrefs

Row sums are A346779.
Column sums are A001004.
Main diagonal is A000012.
Central coefficients are A000207.

Programs

  • PARI
    \\ See PARI Link for program code.
    { my(T=A380361rows(12)); for(i=1, #T, print(T[i])) }

Formula

T(n,k) = A295634(k, n-k).

A007282 Number of hexaflexagons with 3n triangles that can be folded from a straight strip of paper.

Original entry on oeis.org

1, 1, 1, 4, 14, 74, 434, 2876, 19848, 143306, 1062149, 8058223, 62259820, 488630360, 3886211100, 31267852668
Offset: 1

Views

Author

N. J. A. Sloane, frb6006(AT)cs.rit.edu (Frank R. Bernhart)

Keywords

References

  • M. Kosters, A theory of hexaflexagons, Nieuw Archief Wisk., 17 (1999), 349-362.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Extensions

More terms from Mike Godfrey (m.godfrey(AT)umist.ac.uk), Apr 02 2002

A330659 The number of free polyiamonds with n cells on an order-7 triangular tiling of the hyperbolic plane.

Original entry on oeis.org

1, 1, 1, 1, 3, 4, 12, 27, 78, 208, 637, 1870, 5797, 17866, 56237, 177573, 566904, 1818527, 5874180, 19065038
Offset: 0

Views

Author

Peter Kagey, Mar 01 2020

Keywords

Comments

This gives the number of polyforms with n cells in the hyperbolic tiling with Schläfli symbol {3,7}.
This sequence is computed from via program by Christian Sievers in the Code Golf Stack Exchange link.

Crossrefs

Analogs with different Schläfli symbols are A000207 ({3,oo}), A000577 ({3,6}), A005036 ({4,oo}), and A119611 ({4,5}).

Extensions

a(11)-a(19) from Ed Wynn, Feb 14 2021

A001895 Number of rooted planar 2-trees with n nodes.

Original entry on oeis.org

1, 2, 4, 12, 34, 111, 360, 1226, 4206, 14728, 52024, 185824, 668676, 2424033, 8839632, 32412270, 119410390, 441819444, 1641032536, 6116579352, 22870649308, 85764947502, 322476066224, 1215486756372, 4591838372044
Offset: 1

Views

Author

Keywords

References

  • F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 78, (3.5.28).
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    Rest[CoefficientList[Series[(4-8x^2-Sqrt[1-4x]-(3+2x)Sqrt[1-4x^2])/ (8x^2),{x,0,30}],x]] (* Harvey P. Dale, Aug 08 2011 *)

Formula

G.f.: (4-8*x^2-sqrt(1-4*x)-(3+2*x)*sqrt(1-4*x^2))/(8*x^2).
a(n) ~ 4^n/(sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Aug 13 2013
Recurrence: (n+1)*(n+2)*(8*n^3 - 43*n^2 + 67*n - 36)*a(n) = 4*n*(n+1)*(8*n^3 - 39*n^2 + 41*n - 3)*a(n-1) + 4*(8*n^5 - 43*n^4 + 80*n^3 - 26*n^2 - 61*n + 36)*a(n-2) - 8*(n-3)*(2*n-3)*(8*n^3 - 19*n^2 + 5*n - 4)*a(n-3). - Vaclav Kotesovec, Aug 13 2013

Extensions

More terms from Vladeta Jovovic, Aug 24 2001

A332930 Number of polyominoes with n cells on the order-6 square tiling of the hyperbolic plane.

Original entry on oeis.org

1, 1, 1, 2, 5, 16, 60, 255, 1193, 5862, 29875, 155995, 830539, 4489352, 24581675
Offset: 0

Views

Author

Peter Kagey, Mar 02 2020

Keywords

Comments

The order-6 square tiling has Schläfli symbol {4,6}.
This sequence is computed from via program by Christian Sievers in the Code Golf Stack Exchange link.

Crossrefs

Analogs with different Schläfli symbols are A000105 ({4,4}), A000207 ({3,oo}), A000577 ({3,6}), A005036 ({4,oo}), A119611 ({4,5}), and A330659 ({3,7}).

Extensions

a(9)-a(14) from Ed Wynn, Feb 16 2021

A000953 Number of free nonplanar polyenoids with n nodes.

Original entry on oeis.org

1, 5, 24, 109, 465, 1943, 7827, 31095, 121356, 469235, 1797376, 6844290, 25928036
Offset: 7

Views

Author

E. K. Lloyd (E.K.Lloyd(AT)soton.ac.uk)

Keywords

References

  • S. J. Cyvin, J. Brunvoll, E. Brendsdal, B. N. Cyvin and E. K. Lloyd, Enumeration of polyene hydrocarbons: a complete mathematical solution, J. Chem. Inf. Comput. Sci., 35 (1995) 743-751

Formula

a(n) = A000207(n) - A000942(n). - Sean A. Irvine, Oct 15 2015

Extensions

a(16)-a(19) from Sean A. Irvine, Oct 15 2015

A007499 Number of cases considered in a particular algorithm for enumerating hexaflexagrams.

Original entry on oeis.org

2, 3, 4, 12, 20, 55, 127, 371, 1037, 3249, 10071, 32913, 108112, 363618, 1233938, 4244102, 14716095, 51480027, 181312939
Offset: 1

Views

Author

Keywords

Comments

See O'Reilly reference for precise definition.

References

  • Thomas J. O'Reilly, Classifying and Counting Hexaflexagrams, J. Rec. Math., 8 (1976), 182-187.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A000207.

Extensions

Title clarified and a(11)-a(19) from Sean A. Irvine, Jul 12 2022

A063786 G.f.: A(x) = (x-2*x^2-2*x^3-(1+x)*sqrt(1-4*x^2)+sqrt(1-4*x^6))/(2*x^2).

Original entry on oeis.org

1, 1, 1, 2, 5, 5, 14, 14, 41, 42, 132, 132, 429, 429, 1428, 1430, 4862, 4862, 16796, 16796, 58781, 58786, 208012, 208012, 742900, 742900, 2674426, 2674440, 9694845, 9694845, 35357670, 35357670, 129644748, 129644790, 477638700, 477638700
Offset: 2

Views

Author

Vladeta Jovovic, Aug 24 2001

Keywords

References

  • F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 78, (3.5.30). ( A(x) = s_1 bar (x) ).

Crossrefs

Previous Showing 11-20 of 23 results. Next