cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 71-80 of 131 results. Next

A337043 a(0) = 1; thereafter a(n) = exp(-1/n) * Sum_{k>=0} (n*k - 1)^n / (n^k * k!).

Original entry on oeis.org

1, 0, 2, 9, 112, 1875, 43416, 1310946, 49778688, 2313362673, 128894500000, 8469572721533, 647341071298560, 56871349337125648, 5684260661585401728, 640631299771142578125, 80788871646072851660800, 11323828537291632967145015, 1753760620207362607774290432
Offset: 0

Views

Author

Ilya Gutkovskiy, Aug 12 2020

Keywords

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[1/(1 + x) Sum[(x/(1 + x))^k/Product[(1 - n j x/(1 + x)), {j, 1, k}], {k, 0, n}], {x, 0, n}], {n, 0, 18}]
    Join[{1}, Table[n! SeriesCoefficient[Exp[(Exp[n x] - 1)/n - x], {x, 0, n}], {n, 1, 18}]]
    Join[{1}, Table[Sum[(-1)^(n - k) Binomial[n,k] n^k BellB[k, 1/n], {k, 0, n}], {n, 1, 18}]]

Formula

a(n) = [x^n] (1/(1 + x)) * Sum_{k>=0} (x/(1 + x))^k / Product_{j=1..k} (1 - n*j*x/(1 + x)).
a(n) = n! * [x^n] exp((exp(n*x) - 1) / n - x), for n > 0.
a(n) = Sum_{k=0..n} (-1)^(n-k) * binomial(n,k) * n^k * BellPolynomial_k(1/n), for n > 0.

A344489 a(n) = 1 + Sum_{k=0..n-2} binomial(n-1,k) * a(k).

Original entry on oeis.org

1, 1, 2, 4, 11, 34, 122, 487, 2144, 10276, 53165, 294760, 1740950, 10899841, 72033470, 500664496, 3648211139, 27792215302, 220802394110, 1825428024367, 15672798590804, 139499676115312, 1285109772354941, 12235037442987028, 120220980122266010, 1217655627762149857
Offset: 0

Views

Author

Ilya Gutkovskiy, May 21 2021

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := a[n] = 1 + Sum[Binomial[n - 1, k] a[k] , {k, 0, n - 2}]; Table[a[n], {n, 0, 25}]
    nmax = 25; A[] = 0; Do[A[x] = (1 + x A[x/(1 - x)])/(1 - x^2) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]

Formula

G.f. A(x) satisfies: A(x) = (1 + x * A(x/(1 - x))) / (1 - x^2).

A355254 Expansion of e.g.f. exp(3*(exp(x) - 1) - x).

Original entry on oeis.org

1, 2, 7, 29, 142, 785, 4813, 32240, 233449, 1812161, 14980768, 131174939, 1211111629, 11745451658, 119255234371, 1264050651953, 13952113296766, 160006824960725, 1902825936046105, 23423342243273696, 297982102750214605, 3911917977005948453, 52926119656555824520
Offset: 0

Views

Author

Vaclav Kotesovec, Jun 26 2022

Keywords

Comments

Inverse binomial transform of A027710.
In general, if m >= 1 and e.g.f. = exp(m*exp(x) + r*x + s) then
a(n) ~ n^(n+r) * exp(n/LambertW(n/m) - n + s) / (m^r * sqrt(1 + LambertW(n/m)) * LambertW(n/m)^(n+r)).
Equivalently, a(n) ~ n! * (n/m)^r * exp(n/LambertW(n/m) + s) / (sqrt(2*Pi*n * (1 + LambertW(n/m))) * LambertW(n/m)^(n+r)).

Crossrefs

Programs

  • Mathematica
    nmax = 25; CoefficientList[Series[Exp[3*Exp[x]-3-x], {x, 0, nmax}], x] * Range[0, nmax]!
  • PARI
    my(x='x+O('x^30)); Vec(serlaplace(exp(3*(exp(x) - 1) - x))) \\ Michel Marcus, Dec 04 2023

Formula

a(n) ~ 3 * n^(n-1) * exp(n/LambertW(n/3) - n - 3) / (sqrt(1 + LambertW(n/3)) * LambertW(n/3)^(n-1)).
a(0) = 1; a(n) = -a(n-1) + 3 * Sum_{k=1..n} binomial(n-1,k-1) * a(n-k). - Ilya Gutkovskiy, Dec 04 2023

A050372 Number of ways to factor n into distinct composite factors.

Original entry on oeis.org

1, 0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 2, 1, 1, 1, 1, 0, 1, 0, 2, 1, 1, 1, 2, 0, 1, 1, 2, 0, 1, 0, 1, 1, 1, 0, 3, 1, 1, 1, 1, 0, 2, 1, 2, 1, 1, 0, 3, 0, 1, 1, 2, 1, 1, 0, 1, 1, 1, 0, 4, 0, 1, 1, 1, 1, 1, 0, 3, 1, 1, 0, 3, 1, 1, 1, 2, 0, 3, 1, 1, 1, 1, 1, 4, 0, 1, 1, 2, 0, 1
Offset: 1

Views

Author

Christian G. Bower, Nov 15 1999

Keywords

Comments

a(n) depends only on prime signature of n (cf. A025487). So a(24) = a(375) since 24 = 2^3*3 and 375 = 3*5^3 both have prime signature (3,1).

Crossrefs

Programs

  • Maple
    with(numtheory):
    b:= proc(n, k) option remember;
         `if`(isprime(n), 0, `if`(n>k, 0, 1)+
          add(`if`(d>k or isprime(d), 0, b(n/d, d-1))
              , d=divisors(n) minus {1, n}))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=1..120);  # Alois P. Heinz, May 26 2013
  • Mathematica
    b[n_, k_] := b[n, k] = If[PrimeQ[n], 0, If[n>k, 0, 1] + Sum[If[d>k || PrimeQ[d], 0, b[n/d, d-1]], {d, Divisors[n] ~Complement~ {1, n}}]];
    a[n_] := b[n, n];
    Array[a, 120] (* Jean-François Alcover, Mar 21 2017, after Alois P. Heinz *)

Formula

Dirichlet g.f.: Product_{n is composite}(1+1/n^s).

A086659 T(n,k) counts the set partitions of n containing k-1 blocks of length 1.

Original entry on oeis.org

1, 1, 3, 4, 4, 6, 11, 20, 10, 10, 41, 66, 60, 20, 15, 162, 287, 231, 140, 35, 21, 715, 1296, 1148, 616, 280, 56, 28, 3425, 6435, 5832, 3444, 1386, 504, 84, 36, 17722, 34250, 32175, 19440, 8610, 2772, 840, 120, 45, 98253, 194942, 188375, 117975, 53460, 18942, 5082, 1320, 165, 55
Offset: 2

Views

Author

Wouter Meeussen, Jul 27 2003

Keywords

Examples

			The 15 set partitions of {1,2,3,4} consist of 4 partitions with 0 blocks of length 1 : {{1,2,3,4}},{{1,2},{3,4}},{{1,3},{2,4}},{{1,4},{2,3}},
4 partitions with 1 block of length 1 : {{1},{2,3,4}},{{1,2,3},{4}},{{1,2,4},{3}},{{1,3,4},{2}}
6 partitions with 2 blocks of length 1 : {{1},{2},{3,4}},{{1},{2,3},{4}},{{1},{2,4},{3}},{{1,2},{3},{4}},{{1,3},{2},{4}},{{1,4},{2},{3}}.
(There are no partitions with n-1 blocks of length 1 and 1 with n of them)
    1;
    1,   3;
    4,   4,   6;
   11,  20,  10,  10;
   41,  66,  60,  20, 15;
  162, 287, 231, 140, 35, 21;
  ...
		

Crossrefs

Row sums = Bell[n]-1 (A058692), first column=A000296, main diagonal = triangular numbers A000217.

Programs

  • Maple
    with(combinat):
    b:= proc(n, i) option remember; expand(`if`(n=0, 1,
          `if`(i<1, 0, add(multinomial(n, n-i*j, i$j)/j!*
          b(n-i*j, i-1)*`if`(i=1, x^j, 1), j=0..n/i))))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=0..n-2))(b(n$2)):
    seq(T(n), n=2..16);  # Alois P. Heinz, Mar 08 2015
  • Mathematica
    Table[Count[Count[ #, {_Integer}]&/@SetPartitions[n], # ]&/@Range[0, n-2], {n, 2, 10}]

Formula

E.g.f.: exp(x*y)*(exp(exp(x)-1-x)-1). - Vladeta Jovovic, Jul 28 2003

Extensions

More terms from Vladeta Jovovic, Jul 28 2003

A098742 Number of indecomposable set partitions of [1..n] without singletons.

Original entry on oeis.org

0, 0, 1, 1, 3, 9, 33, 135, 609, 2985, 15747, 88761, 531561, 3366567, 22462017, 157363329, 1154257683, 8841865833, 70573741857, 585753925047, 5046128460801, 45044554041897, 416005748766771, 3969321053484921, 39077616720410409
Offset: 0

Views

Author

Don Knuth, Oct 01 2004

Keywords

Comments

After a(3) = 1, always divisible by 3. a(n) is 3 times a prime (A001748) when n = 5, 6, 11, 14, 15, 16, 19. - Jonathan Vos Post, Jun 22 2008

Examples

			a(5)=9 because of the set partitions 135|24, 134|25, 125|34, 145|23, 15|234, 13|245, 124|35, 12345, 14|235. [Puttenham missed the last of these.]
		

References

  • D. E. Knuth, TAOCP, Vol. 4, Section 7.2.1.7, Problem 26.
  • George Puttenham, The Arte of English Poesie (1589), page 72, can be said to have stated the problem; but he omitted one case for n=5 and 22 cases for n=6, so he must have had other constraints in mind!

Crossrefs

Programs

  • Maple
    F:= proc(n) option remember; convert(series(1 -1/add(coeff(series(exp(exp(x)-1), x,n+1), x,j)*j!*x^j, j=0..n), x,n+1), polynom) end: a:= n-> coeff(series(x*F(n)/(1+x-F(n)), x,n+1), x,n): seq(a(n), n=0..24); # Alois P. Heinz, Sep 05 2008
  • Mathematica
    f[n_] := f[n] = Normal[ Series[ 1-1/Sum[ SeriesCoefficient[ Series[ Exp[Exp[x] - 1], {x, 0, n + 1}], {x, 0, j}]*j!*x^j, {j, 0, n}], {x, 0, n + 1}]]; a[0] = 0; a[n_] := SeriesCoefficient[ Series[ x*(f[n]/(1 + x - f[n])), {x, 0, n + 1}], {x, 0, n}]; Table[a[n], {n, 0, 24}] (* Jean-François Alcover, translated from Maple *)
  • Sage
    def A098742_list(dim):
        T = matrix(ZZ,dim,dim)
        for n in range(dim): T[n,n] = 1
        for n in (1..dim-1):
            for k in (0..n-1):
                T[n,k] = T[n-1,k-1]+(k+1)*T[n-1,k]+(k+2)*T[n-1,k+1]
        return [0,0]+list(T.column(0))
    A098742_list(23) # - Peter Luschny, Sep 20 2012

Formula

If f(z) is the generating function for A074664, then a(z)=zf(z)/(1+z-f(z)).
Also, if g(z) is the generating function for A000296, then a(z) = 1-1/g(z).
O.g.f.: x^2/(1-x-2*x^2/(1-2*x-3*x^2/(1-3*x-4*x^2/(1-... -n*x-(n+1)*x^2/(1- ...)))))) (continued fraction). - Paul D. Hanna, Jan 17 2006
From Sergei N. Gladkovskii, Sep 20 2012, Nov 04 2012, Feb 04 2013, Feb 23 2013, Apr 18 2013, May 12 2013: (Start) Continued fractions:
G.f.: -x + 2*x/E(0) where E(k)= 1 + 1/(1 + 2*x/(1 - 2*(k+2)*x/E(k+1))).
G.f.: 1 - x*U(0,1/x) where U(k,x)= x - k - (k+1)/U(k+1,x).
G.f.: (1+x)*x/G(0) - x where G(k) = 1 + x - x*(k+1)/(1 - x/G(k+1)).
G.f.: x/Q(0) - x where Q(k)= 1 + x/(x*k-x-1)/Q(k+1).
G.f.: 1 - Q(0) where Q(k)= 1 + x - x/(1 - x*(k+1)/Q(k+1)).
G.f.: 1-x-1/Q(0) where Q(k)= 1 + x/(1 - x - x*(k+1)/(x + 1/Q(k+1))). (End)

Extensions

More terms from Vladeta Jovovic, Oct 21 2004

A184175 Number of set partitions of {1,2,...,n} having no blocks of the form {i, i+1}.

Original entry on oeis.org

1, 1, 1, 3, 10, 35, 139, 611, 2925, 15128, 83903, 495929, 3108129, 20565721, 143134606, 1044489265, 7968879387, 63407648443, 525016067171, 4514661402304, 40245681692885, 371319303282381, 3540506731807277, 34840411462506887, 353394158240095874, 3690577066014598575
Offset: 0

Views

Author

Emeric Deutsch, Feb 09 2011

Keywords

Comments

a(n) = A184174(n,0).

Examples

			a(3)=3 because we have 1-2-3, 13-2, and 123. a(4)=10 because among the 15 (=bell(4)) partitions of {1,2,3,4} only 12-34, 14-23, 12-3-4, 1-23-4, and 1-2-34, have adjacent blocks of size 2.
Contribution from _Paul D. Hanna_, Sep 03 2017: (Start)
G.f.: A(x) = 1 + x + x^2 + 3*x^3 + 10*x^4 + 35*x^5 + 139*x^6 + 611*x^7 + 2925*x^8 + 15128*x^9 + 83903*x^10 + 495929*x^11 + 3108129*x^12 +...
where
G.f.: A(x) = 1/(1+x^2) + x/((1+x^2)*(1-x+x^2)) + x^2/((1+x^2)*(1-x+x^2)*(1-2*x+x^2)) + x^3/((1+x^2)*(1-x+x^2)*(1-2*x+x^2)*(1-3*x+x^2)) +... (End)
		

Crossrefs

Programs

  • Maple
    with(combinat): seq(add((-1)^j*binomial(n-j, j)*bell(n-2*j), j = 0 .. floor((1/2)*n)), n = 0 .. 25);
  • Mathematica
    Table[Sum[(-1)^j*Binomial[n-j, j]*BellB[n-2*j], {j, 0, Floor[n/2]}], {n, 0, 25}] (* Jean-François Alcover, Feb 22 2017, translated from Maple *)
  • PARI
    {a(n) = my(A = sum(m=0,n, x^m/prod(k=0,m,1-k*x+x^2 +x*O(x^n)))); polcoeff(A,n)}
    for(n=0,30,print1(a(n),", ")) \\ Paul D. Hanna, Sep 03 2017

Formula

a(n) = Sum((-1)^j*binomial(n-j,j)*bell(n-2j), j=0..floor(n/2)).
G.f.: Sum_{n>=0} x^n / Product_{k=0..n} (1 - k*x + x^2). - Paul D. Hanna, Sep 03 2017

A250104 Triangle read by rows: T(n,k) = number of partitions of n with k circular successions (n>=0, 0 <= k <= n).

Original entry on oeis.org

0, 1, 0, 1, 0, 1, 1, 3, 0, 1, 4, 4, 6, 0, 1, 11, 20, 10, 10, 0, 1, 41, 66, 60, 20, 15, 0, 1, 162, 287, 231, 140, 35, 21, 0, 1, 715, 1296, 1148, 616, 280, 56, 28, 0, 1, 3425, 6435, 5832, 3444, 1386, 504, 84, 36, 0, 1, 17722, 34250, 32175, 19440, 8610, 2772, 840, 120, 45, 0, 1
Offset: 0

Views

Author

N. J. A. Sloane, Nov 16 2014

Keywords

Examples

			Triangle begins:
0
1, 0,
1, 0, 1,
1, 3, 0, 1,
4, 4, 6, 0, 1,
11, 20, 10, 10, 0, 1,
41, 66, 60, 20, 15, 0, 1,
162, 287, 231, 140, 35, 21, 0, 1,
715, 1296, 1148, 616, 280, 56, 28, 0, 1,
3425, 6435, 5832, 3444, 1386, 504, 84, 36, 0, 1,
17722, 34250, 32175, 19440, 8610, 2772, 840, 120, 45, 0, 1
...
		

Crossrefs

A124323 is an essentially identical triangle, differing only in row 0 and 1.
For columns see A000296, A250105 - A250107.

Programs

  • Mathematica
    t[n_, k_] := Binomial[n, k]*((-1)^(n-k)+Sum[(-1)^(j-1)*BellB[n-k-j], {j, 1, n-k}]); t[0, 0]=0; t[1, 0]=1; t[1, 1]=0; Table[t[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Dec 09 2014 *)

A367786 Expansion of e.g.f. exp(exp(4*x) - x - 1).

Original entry on oeis.org

1, 3, 25, 235, 2737, 36947, 563657, 9542715, 176920417, 3555369635, 76820077945, 1772943290763, 43469116126737, 1127040956393203, 30779951676185385, 882453651485815003, 26480355971228530369, 829522636694530362691, 27064267045022876869337, 917751849133986186857003
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 30 2023

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 19; CoefficientList[Series[Exp[Exp[4 x] - x - 1], {x, 0, nmax}], x] Range[0, nmax]!
    a[0] = 1; a[n_] := a[n] = -a[n - 1] + Sum[Binomial[n - 1, k - 1] 4^k a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 19}]
    Table[Sum[(-1)^(n - k) Binomial[n, k] 4^k BellB[k], {k, 0, n}], {n, 0, 19}]
  • PARI
    my(x='x+O('x^30)); Vec(serlaplace(exp(exp(4*x) - x - 1))) \\ Michel Marcus, Nov 30 2023

Formula

a(n) = exp(-1) * Sum_{k>=0} (4*k-1)^n / k!.
a(0) = 1; a(n) = -a(n-1) + Sum_{k=1..n} binomial(n-1,k-1) * 4^k * a(n-k).
a(n) = Sum_{k=0..n} (-1)^(n-k) * binomial(n,k) * 4^k * Bell(k).

A367888 Expansion of e.g.f. exp(3*(exp(x) - 1) - 2*x).

Original entry on oeis.org

1, 1, 4, 13, 61, 304, 1747, 10945, 74830, 550687, 4335109, 36272086, 320980645, 2991373597, 29253607780, 299258487553, 3193634980753, 35469069928792, 409082335024591, 4890313138089133, 60489400453642822, 772967507343358171, 10189818916331129017, 138398721137005215526
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 04 2023

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n, k, m) option remember; `if`(n=0, 3^m, `if`(k>0,
          b(n-1, k-1, m+1)*k, 0)+m*b(n-1, k, m)+b(n-1, k+1, m))
        end:
    a:= n-> b(n, 0$2):
    seq(a(n), n=0..23);  # Alois P. Heinz, Apr 29 2025
  • Mathematica
    nmax = 23; CoefficientList[Series[Exp[3 (Exp[x] - 1) - 2 x], {x, 0, nmax}], x] Range[0, nmax]!
    a[0] = 1; a[n_] := a[n] = -2 a[n - 1] + 3 Sum[Binomial[n - 1, k - 1] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 23}]
    Table[Sum[Binomial[n, k] (-2)^(n - k) BellB[k, 3], {k, 0, n}], {n, 0, 23}]
  • PARI
    my(x='x+O('x^30)); Vec(serlaplace(exp(3*(exp(x) - 1) - 2*x))) \\ Michel Marcus, Dec 04 2023

Formula

G.f. A(x) satisfies: A(x) = 1 - x * ( 2 * A(x) - 3 * A(x/(1 - x)) / (1 - x) ).
a(n) = exp(-3) * Sum_{k>=0} 3^k * (k-2)^n / k!.
a(0) = 1; a(n) = -2 * a(n-1) + 3 * Sum_{k=1..n} binomial(n-1,k-1) * a(n-k).
a(n) = Sum_{k=0..n} binomial(n,k) * (-2)^(n-k) * A027710(k).
Previous Showing 71-80 of 131 results. Next