cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 40 results.

A299399 a(n) = a(n-1)*a(n-2)*a(n-3)*a(n-4); a(0..3) = (1, 1, 2, 3).

Original entry on oeis.org

1, 1, 2, 3, 6, 36, 1296, 839808, 235092492288, 9211413321697223245824, 2356948205087252000835395074931259831484416, 4286423488783965214900384842824017360544199884413056912194095171350270745233063936
Offset: 0

Views

Author

M. F. Hasler, Apr 22 2018

Keywords

Comments

A variant of A000336 which uses initial values (1,2,3,4).
A multiplicative variant of the tetranacci sequences A000078, A001631 and other variants.

Crossrefs

Cf. A000336 (variant starting 1,2,3,4).
Cf. A000301 (order 2 variant), A000308 (order 3 variant).
Subsequence of A003586 (3-smooth numbers).
Cf. A000078, A001631 (additive variants).

Programs

  • Mathematica
    nxt[{a_,b_,c_,d_}]:={b,c,d,a b c d}; NestList[nxt,{1,1,2,3},13][[All,1]] (* Harvey P. Dale, Jun 09 2022 *)
  • PARI
    A299399(n,a=[1,1,2,3,6])={for(n=5,n,a[n%#a+1]=a[(n-1)%#a+1]^2\a[n%#a+1]);a[n%#a+1]}

Formula

a(n) = a(n-1)^2 / a(n-5) for n > 4.
a(n) = 2^A001631(n)*3^A000078(n).

A036544 a(n) = (2*(1 + n + (((10^n-1)/9) - n)/9)).

Original entry on oeis.org

2, 4, 8, 32, 256, 2480, 24704, 246928, 2469152, 24691376, 246913600, 2469135824, 24691358048, 246913580272, 2469135802496, 24691358024720, 246913580246944
Offset: 0

Views

Author

Antti Karttunen

Keywords

Comments

Result of applying extrapolator to terms 3-7 of A000301.

Programs

  • Magma
    [(2*(1+n+(((10^n-1)/9)-n)/9)): n in [0..30]]; // Vincenzo Librandi, Nov 11 2011
  • Mathematica
    LinearRecurrence[{12,-21,10},{2,4,8},20] (* Harvey P. Dale, Mar 11 2025 *)

Formula

a(n) = (2/81)*(72*n + 10^n + 80).
G.f.: 2*(1 - 10*x + x^2)/((1-10*x)*(1-x)^2). - Bruno Berselli, Nov 11 2011

A073116 Continued fraction expansion of S/2 where S = Sum_{k>=0} 1/2^floor(k*phi) (A073115) and phi is the golden ratio (1+sqrt(5))/2 (A001622).

Original entry on oeis.org

0, 1, 5, 1, 8, 4, 64, 128, 16384, 1048576, 34359738368, 18014398509481984, 1237940039285380274899124224, 11150372599265311570767859136324180752990208, 27606985387162255149739023449108101809804435888681546220650096895197184
Offset: 1

Views

Author

Benoit Cloitre, Aug 19 2002

Keywords

Comments

The number S is the number whose digits are obtained from the substitution system (1->(1,0),0->(1)). The n-th term of the continued fraction expansion for S is 2^Fibonacci(n-2) (cf. A000301). This number S is known to be transcendental. The continued fraction of S/2^m follows the same kind of rule as for S/2.

Crossrefs

Programs

  • Mathematica
    a[1] = 0; a[2] = 1; a[3] = 5; a[n_] := 2^(Fibonacci[n - 2] - (-1)^n); Array[a, 15] (* Amiram Eldar, May 08 2022 *)

Formula

If n>2, a(2n+1) = 2^(F(2n-1)+1) and a(2n)= 2^(F(2n-2)-1), where F(n) is the n-th Fibonacci number.

Extensions

More terms from Amiram Eldar, May 08 2022

A076776 a(0) = 1, a(1) = 2, a(2) = 5; for n > 2, a(n) = a(n-1)*a(n-2).

Original entry on oeis.org

1, 2, 5, 10, 50, 500, 25000, 12500000, 312500000000, 3906250000000000000, 1220703125000000000000000000000, 4768371582031250000000000000000000000000000000000
Offset: 0

Views

Author

Emily Shields (emilyshields_2001(AT)hotmail.com), Nov 14 2002

Keywords

Crossrefs

Programs

  • Maple
    with(combinat, fibonacci):A076776 := n->2^fibonacci(n-2)*5^fibonacci(n-1);
  • Mathematica
    nxt[{a_,b_}]:={b,a*b}; Join[{1},NestList[nxt,{2,5},15][[All,1]]] (* Harvey P. Dale, Jun 07 2021 *)

Formula

a(n) = 2^fibonacci(n-2)*5^fibonacci(n-1)for n>=2, fibonacci(n)=A000045(n). - Vladeta Jovovic and Antonio G. Astudillo (afg_astudillo(AT)hotmail.com), Nov 16 2002

Extensions

More terms from Antonio G. Astudillo (afg_astudillo(AT)hotmail.com), Nov 16 2002

A168089 a(n) = 2^pentanacci(n).

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 4, 16, 256, 65536, 2147483648, 2305843009213693952, 1329227995784915872903807060280344576, 110427941548649020598956093796432407239217743554726184882600387580788736
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    2^LinearRecurrence[{1, 1, 1, 1, 1}, {0, 0, 0, 0, 1}, 15] (* Vincenzo Librandi, Dec 09 2018 *)

Formula

a(n) = 2^A001591(n).

A249055 a(1)=0; the next term is always the product of the two smallest numbers not yet in the sequence and which have not yet been used.

Original entry on oeis.org

0, 2, 12, 30, 56, 90, 143, 210, 272, 342, 420, 506, 600, 702, 812, 992, 1122, 1260, 1406, 1560, 1722, 1892, 2070, 2256, 2450, 2652, 2862, 3135, 3422, 3660, 3906, 4160, 4422, 4692, 4970, 5256, 5550, 5852, 6162, 6480, 6806, 7140, 7482, 7832, 8372, 8742, 9120, 9506, 9900
Offset: 1

Views

Author

N. J. A. Sloane, Nov 01 2014

Keywords

Comments

Suggested by A075336 and A249406.

Examples

			Start with a(1) = 0. The missing numbers are 1 2 3 4 5 6 ...
Multiply the first two, and we get 2, which is therefore a(2).
Cross 1, 2, and 1*2 = 2 off the missing list.
The first two missing numbers are now 3 and 4, so a(3) = 3*4 = 12.
Cross off 3,4,12 from the missing list.
Repeat!
		

Crossrefs

Programs

  • Maple
    M:=50; A:=[0]; miss:=[seq(n,n=1..M^2)]:
    for n from 1 to M do t1:=miss[1]*miss[2]; A:=[op(A),t1];
    miss:=[seq(miss[i],i=3..nops(miss))];
    miss:=remove('x->x=t1',miss);
    od:
    A;

Extensions

Typo in definition corrected by Douglas Latimer, Nov 01 2014

A258161 a(n) = a(n-1)^3/a(n-2) with a(0)=1, a(1)=2.

Original entry on oeis.org

1, 2, 8, 256, 2097152, 36028797018963968, 22300745198530623141535718272648361505980416
Offset: 0

Views

Author

Vaclav Kotesovec, May 22 2015

Keywords

Comments

The next term has 114 digits.

Crossrefs

Programs

  • Mathematica
    Clear[a]; RecurrenceTable[{a[n]==a[n-1]^3/a[n-2], a[0]==1, a[1]==2},a,{n,0,8}]
    Clear[a]; a[0]=2; a[n_]:=a[n]=Product[a[j]^(n-j),{j,0,n-1}]; Flatten[{1, Table[a[n], {n,1,8}]}]
    Table[2^(Fibonacci[2*n]), {n, 0, 8}]

Formula

a(n) = 2^(Fibonacci(2*n)).

A228778 a(n) = 2^Fibonacci(n) + 1.

Original entry on oeis.org

2, 3, 3, 5, 9, 33, 257, 8193, 2097153, 17179869185, 36028797018963969, 618970019642690137449562113, 22300745198530623141535718272648361505980417, 13803492693581127574869511724554050904902217944340773110325048447598593
Offset: 0

Views

Author

Yeshwant Shivrai Valaulikar and M. Tamba, Sep 04 2013

Keywords

Crossrefs

Programs

  • Maple
    a:= n-> 1 + 2^(<<0|1>, <1|1>>^n)[1,2]:
    seq(a(n), n=0..15);  # Alois P. Heinz, Aug 12 2017
  • Mathematica
    Table[2^Fibonacci[n] + 1, {n, 0, 13}] (* T. D. Noe, Sep 07 2013 *)

Formula

a(n+2) = a(n+1)*a(n) - a(n) - a(n+1) + 2, a(0)=2, a(1)=3.
Binet type formula: log_2(a(n)-1) = (1/sqrt(5)) * (r^n - s^n), where r and s are the roots of x^2-x-1. (this is true by definition).
a(n) = A000301(n) + 1 = A063896(n) + 2. - Alois P. Heinz, Aug 12 2017

A277121 Numbers that immediately halt Conway's FIBONACCIGAME.

Original entry on oeis.org

1, 2, 4, 5, 7, 8, 10, 11, 14, 16, 20, 22, 25, 28, 32, 35, 40, 44, 47, 49, 50, 53, 55, 56, 59, 61, 64, 67, 70, 71, 73, 77, 79, 80, 83, 88, 89, 94, 97, 98, 100, 101, 103, 106, 107, 109, 110, 112, 113, 118, 121, 122, 125, 127, 128, 131, 134, 137, 139, 140, 142, 146, 149, 151, 154, 157, 158
Offset: 1

Views

Author

Alonso del Arte, Sep 30 2016

Keywords

Comments

Like PRIMEGAME, Conway's FIBONACCIGAME uses a list of fractions to come up with a sequence expressed as exponents of powers of 2, the sequence in this case being the Fibonacci numbers (A000045, see A000301).
Unlike PRIMEGAME, FIBONACCIGAME does not have any integers in its list of rational numbers, which means that the process always comes to a halt, sooner or later, depending on the initial value.
Hence this sequence includes all powers of 2 (A000079). Also all primes greater than 43.
However, this sequence includes no multiples of 13 (as they can be handled by 17/65 or 1/13), nor any multiples of 3 (as they're taken care of by 1/3).
Indeed the sequence contains no multiples of 17, 19, 23, 29, 31, 37 either.

Crossrefs

Programs

  • PARI
    is(n)=gcd(16990599132039,n)==1 && n%65 && n%34 && n%69 && n%341 && n%287 \\ Charles R Greathouse IV, Nov 26 2016

A377231 a(n) = digital root of 2^Fibonacci(n).

Original entry on oeis.org

1, 2, 2, 4, 8, 5, 4, 2, 8, 7, 2, 5, 1, 5, 5, 7, 8, 2, 7, 5, 8, 4, 5, 2, 1, 2, 2, 4, 8, 5, 4, 2, 8, 7, 2, 5, 1, 5, 5, 7, 8, 2, 7, 5, 8, 4, 5, 2, 1, 2, 2, 4, 8, 5, 4, 2, 8, 7, 2, 5, 1, 5, 5, 7, 8, 2, 7, 5, 8, 4, 5, 2, 1, 2, 2, 4, 8, 5, 4, 2, 8, 7, 2, 5, 1, 5, 5, 7, 8, 2, 7, 5, 8, 4, 5, 2
Offset: 0

Views

Author

Robert Bruce Gray, Oct 20 2024

Keywords

Comments

This sequence has period 24.

Crossrefs

Programs

  • Mathematica
    Module[{a, n}, RecurrenceTable[{a[n] == Mod[a[n-1]*a[n-2] - 1, 9] + 1, a[0] == 1, a[1] == 2}, a, {n, 0, 99}]] (* or *)
    PadRight[{}, 100, {1, 2, 2, 4, 8, 5, 4, 2, 8, 7, 2, 5, 1, 5, 5, 7, 8, 2, 7, 5, 8, 4, 5, 2}] (* Paolo Xausa, Nov 08 2024 *)

Formula

a(n) = (a(n-1) * a(n-2) - 1) mod 9 + 1.
a(n) = A010888(A000301(n)).
Previous Showing 31-40 of 40 results.