cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 61-70 of 105 results. Next

A129584 Number of unlabeled bi-point-determining graphs: graphs in which no two vertices have the same neighborhoods or the same augmented neighborhoods (the augmented neighborhood of a vertex is the neighborhood of the vertex union the vertex itself).

Original entry on oeis.org

1, 0, 0, 1, 6, 36, 324, 5280, 156088, 8415760
Offset: 1

Views

Author

Ji Li (vieplivee(AT)hotmail.com), May 07 2007

Keywords

Comments

This is the unlabeled case of bi-point-determining graphs, which are basically graphs that are both point-determining (no two vertices have the same neighborhoods) and co-point-determining (graphs whose complements are point-determining)

Crossrefs

Cf. graphs: labeled A006125, unlabeled A000568; connected graphs: labeled A001187, unlabeled A001349; point-determining graphs: labeled A006024, unlabeled A004110; connected point-determining graphs: labeled A092430, unlabeled A004108; connected co-point-determining graphs: labeled A079306, unlabeled A004108; bi-point-determining graphs: labeled A129583, unlabeled A129584; connected bi-point-determining graphs: labeled A129585, unlabeled A129586; phylogenetic trees: labeled A000311, unlabeled A000669.

A320174 Number of series-reduced rooted trees whose leaves are constant integer partitions whose multiset union is an integer partition of n.

Original entry on oeis.org

1, 3, 6, 19, 55, 200, 713, 2740, 10651, 42637, 173012, 713280, 2972389, 12514188, 53119400, 227140464, 977382586, 4229274235, 18391269922, 80330516578, 352269725526, 1550357247476, 6845517553493, 30316222112019, 134626183784975, 599341552234773, 2674393679352974
Offset: 1

Views

Author

Gus Wiseman, Oct 07 2018

Keywords

Comments

A rooted tree is series-reduced if every non-leaf node has at least two branches.

Examples

			The a(1) = 1 through a(4) = 19 trees:
  (1)  (2)       (3)            (4)
       (11)      (111)          (22)
       ((1)(1))  ((1)(2))       (1111)
                 ((1)(11))      ((1)(3))
                 ((1)(1)(1))    ((2)(2))
                 ((1)((1)(1)))  ((2)(11))
                                ((1)(111))
                                ((11)(11))
                                ((1)(1)(2))
                                ((1)(1)(11))
                                ((1)((1)(2)))
                                ((2)((1)(1)))
                                ((1)((1)(11)))
                                ((1)(1)(1)(1))
                                ((11)((1)(1)))
                                ((1)((1)(1)(1)))
                                ((1)(1)((1)(1)))
                                (((1)(1))((1)(1)))
                                ((1)((1)((1)(1))))
		

Crossrefs

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    dot[m_]:=If[SameQ@@m,Prepend[#,m],#]&[Join@@Table[Union[Sort/@Tuples[dot/@p]],{p,Select[mps[m],Length[#]>1&]}]];
    Table[Length[Join@@Table[dot[m],{m,IntegerPartitions[n]}]],{n,10}]
  • PARI
    EulerT(v)={Vec(exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1, -#v)}
    seq(n)={my(v=vector(n)); for(n=1, n, v[n]=numdiv(n) + EulerT(v[1..n])[n]); v} \\ Andrew Howroyd, Oct 25 2018

Extensions

Terms a(11) and beyond from Andrew Howroyd, Oct 25 2018

A320175 Number of series-reduced rooted trees whose leaves are strict integer partitions whose multiset union is an integer partition of n.

Original entry on oeis.org

1, 2, 5, 13, 37, 120, 395, 1381, 4931, 18074, 67287, 254387, 972559, 3756315, 14629237, 57395490, 226613217, 899773355, 3590349661, 14390323014, 57907783039, 233867667197, 947601928915, 3851054528838, 15693587686823, 64114744713845, 262543966114921, 1077406218930902
Offset: 1

Views

Author

Gus Wiseman, Oct 07 2018

Keywords

Comments

A rooted tree is series-reduced if every non-leaf node has at least two branches.

Examples

			The a(1) = 1 through a(4) = 13 trees:
  (1)  (2)       (3)            (4)
       ((1)(1))  (21)           (31)
                 ((1)(2))       ((1)(3))
                 ((1)(1)(1))    ((2)(2))
                 ((1)((1)(1)))  ((1)(21))
                                ((1)(1)(2))
                                ((1)((1)(2)))
                                ((2)((1)(1)))
                                ((1)(1)(1)(1))
                                ((1)((1)(1)(1)))
                                ((1)(1)((1)(1)))
                                (((1)(1))((1)(1)))
                                ((1)((1)((1)(1))))
		

Crossrefs

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    sot[m_]:=If[UnsameQ@@m,Prepend[#,m],#]&[Join@@Table[Union[Sort/@Tuples[sot/@p]],{p,Select[mps[m],Length[#]>1&]}]];
    Table[Length[Join@@Table[sot[m],{m,IntegerPartitions[n]}]],{n,10}]
  • PARI
    EulerT(v)={Vec(exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1, -#v)}
    seq(n)={my(p=prod(k=1, n, 1 + x^k + O(x*x^n)), v=vector(n)); for(n=1, n, v[n]=polcoef(p, n) + EulerT(v[1..n])[n]); v} \\ Andrew Howroyd, Oct 25 2018

Extensions

Terms a(11) and beyond from Andrew Howroyd, Oct 25 2018

A330668 Number of non-isomorphic balanced reduced multisystems of weight n whose leaves (which are multisets of atoms) are all sets.

Original entry on oeis.org

1, 1, 1, 3, 22, 204, 2953
Offset: 0

Views

Author

Gus Wiseman, Dec 27 2019

Keywords

Comments

A balanced reduced multisystem is either a finite multiset, or a multiset partition with at least two parts, not all of which are singletons, of a balanced reduced multisystem. The weight of an atom is 1, while the weight of a multiset is the sum of weights of its elements.

Examples

			Non-isomorphic representatives of the a(1) = 1 through a(4) = 22 multisystems:
  {1}  {1,2}  {1,2,3}      {1,2,3,4}
              {{1},{1,2}}  {{1},{1,2,3}}
              {{1},{2,3}}  {{1,2},{1,2}}
                           {{1,2},{1,3}}
                           {{1},{2,3,4}}
                           {{1,2},{3,4}}
                           {{1},{1},{1,2}}
                           {{1},{1},{2,3}}
                           {{1},{2},{1,2}}
                           {{1},{2},{1,3}}
                           {{1},{2},{3,4}}
                           {{{1}},{{1},{1,2}}}
                           {{{1}},{{1},{2,3}}}
                           {{{1,2}},{{1},{1}}}
                           {{{1}},{{2},{1,2}}}
                           {{{1,2}},{{1},{2}}}
                           {{{1}},{{2},{1,3}}}
                           {{{1,2}},{{1},{3}}}
                           {{{1}},{{2},{3,4}}}
                           {{{1,2}},{{3},{4}}}
                           {{{2}},{{1},{1,3}}}
                           {{{2,3}},{{1},{1}}}
		

Crossrefs

The case with all atoms different is A318813.
The version where the leaves are multisets is A330474.
The tree version is A330626.
The maximum-depth case is A330677.
Unlabeled series-reduced rooted trees whose leaves are sets are A330624.

A129583 Number of labeled bi-point-determining graphs with n vertices.

Original entry on oeis.org

1, 1, 0, 0, 12, 312, 13824, 1147488, 178672128, 52666091712, 29715982846848, 32452221242518272, 69259424722321036032, 291060255757818125657088, 2421848956937579216663491584, 40050322614433939228627991906304, 1319551659023608317386779165849208832
Offset: 0

Views

Author

Ji Li (vieplivee(AT)hotmail.com), May 07 2007

Keywords

Comments

A bi-point determining graph is a graph in which no two vertices have the same neighborhoods or the same augmented neighborhoods (the augmented neighborhood of a vertex is the neighborhood of the vertex union the vertex itself).

References

  • R. C. Read, The Enumeration of Mating-Type Graphs. Report CORR 89-38, Dept. Combinatorics and Optimization, Univ. Waterloo, 1989.

Crossrefs

Cf. graphs: labeled A006125, unlabeled A000568; connected graphs: labeled A001187, unlabeled A001349; point-determining graphs: labeled A006024, unlabeled A004110; connected point-determining graphs: labeled A092430, unlabeled A004108; connected co-point-determining graphs: labeled A079306, unlabeled A004108; bi-point-determining graphs: labeled A129583, unlabeled A129584; connected bi-point-determining graphs: labeled A129585, unlabeled A129586; phylogenetic trees: labeled A000311, unlabeled A000669.

Programs

  • PARI
    seq(n)={my(g=sum(k=0, n, 2^binomial(k,2)*x^k/k!) + O(x*x^n)); Vec(serlaplace(subst(g, x, 2*log(1+x+O(x*x^n))-x)))} \\ Andrew Howroyd, May 06 2021

Formula

E.g.f.: G(2*log(1+x)-x) where G(x) is the e.g.f. of A006125.

Extensions

a(0)=1 prepended and terms a(13) and beyond from Andrew Howroyd, May 06 2021

A129585 Number of labeled connected bi-point-determining graphs with n vertices (see A129583).

Original entry on oeis.org

1, 1, 0, 0, 12, 252, 12312, 1061304, 170176656, 51134075424, 29204599254624, 32130964585236096, 68873851786953047040, 290164895151435531345024, 2417786648013402212500060416, 40014055814155246577685250570752, 1318911434129029730677931158374449664
Offset: 0

Views

Author

Ji Li (vieplivee(AT)hotmail.com), May 07 2007

Keywords

Comments

The calculation of connected bi-point-determining graphs is carried out by examining the connected components of bi-point-determining graphs. For more details, see reference.

Crossrefs

Cf. graphs: labeled A006125, unlabeled A000568; connected graphs: labeled A001187, unlabeled A001349; point-determining graphs: labeled A006024, unlabeled A004110; connected point-determining graphs: labeled A092430, unlabeled A004108; connected co-point-determining graphs: labeled A079306, unlabeled A004108; bi-point-determining graphs: labeled A129583, unlabeled A129584; connected bi-point-determining graphs: labeled A129585, unlabeled A129586; phylogenetic trees: labeled A000311, unlabeled A000669.

Programs

  • Mathematica
    max = 15; f[x_] := x + Log[ Sum[ 2^Binomial[n, 2]*((2*Log[1 + x] - x)^n/n!), {n, 0, max}]/(1 + x)]; A129585 = Drop[ CoefficientList[ Series[ f[x], {x, 0, max}], x]*Range[0, max]!, 1](* Jean-François Alcover, Jan 13 2012, after e.g.f. *)
  • PARI
    seq(n)={my(g=sum(k=0, n, 2^binomial(k,2)*x^k/k!) + O(x*x^n)); Vec(serlaplace(1+x+log(subst(g, x, 2*log(1+x+O(x*x^n))-x)/(1+x))))} \\ Andrew Howroyd, May 06 2021

Formula

E.g.f.: 1 + x + log((Sum_{n>=0} 2^binomial(n,2)*(2*log(1+x)-x)^n/n!)/(1+x)). - Goran Kilibarda, Vladeta Jovovic, May 09 2007
E.g.f.: 1 + x + log(B(x)/(1+x)) where B(x) is the e.g.f. of A129583. - Andrew Howroyd, May 06 2021

Extensions

More terms from Goran Kilibarda, Vladeta Jovovic, May 09 2007
a(0)=1 prepended and terms a(16) and beyond from Andrew Howroyd, May 06 2021

A129586 Number of unlabeled connected bi-point-determining graphs (see A129583).

Original entry on oeis.org

1, 0, 0, 1, 5, 31, 293, 4986, 151096, 8264613, 812528493, 144251345591, 46649058611515, 27744159658789435, 30603223477819571330, 63039669933956074333128, 243839768084859914114367906, 1779006737976575676931317142360, 24571827603944282248499044846893618
Offset: 1

Views

Author

Ji Li (vieplivee(AT)hotmail.com), May 07 2007

Keywords

Comments

The calculation of the number of connected bi-point-determining graphs is carried out by examining the connected components of bi-point-determining graphs. For more details, see linked paper "Enumeration of point-determining Graphs".

Crossrefs

Cf. graphs: labeled A006125, unlabeled A000568; connected graphs: labeled A001187, unlabeled A001349; point-determining graphs: labeled A006024, unlabeled A004110; connected point-determining graphs: labeled A092430, unlabeled A004108; connected co-point-determining graphs: labeled A079306, unlabeled A004108; bi-point-determining graphs: labeled A129583, unlabeled A129584; connected bi-point-determining graphs: labeled A129585, unlabeled A129586; phylogenetic trees: labeled A000311, unlabeled A000669.

Extensions

151096 and 8264613 from Vladeta Jovovic, May 10 2007
a(n) for n >= 11 from Martin Rubey, May 08 2025

A135494 Triangle read by rows: row n gives coefficients C(n,j) for a Sheffer sequence (binomial-type) with lowering operator (D-1)/2 + T{ (1/2) * exp[(D-1)/2] } where T(x) is Cayley's Tree function.

Original entry on oeis.org

1, -1, 1, -1, -3, 1, -1, -1, -6, 1, -1, 5, 5, -10, 1, -1, 19, 30, 25, -15, 1, -1, 49, 49, 70, 70, -21, 1, -1, 111, -70, -91, 70, 154, -28, 1, -1, 237, -883, -1218, -861, -126, 294, -36, 1, -1, 491, -4410, -4495, -3885, -2877, -840, 510, -45, 1
Offset: 1

Views

Author

Tom Copeland, Feb 08 2008

Keywords

Comments

The lowering (or delta) operator for these polynomials is L = (D-1)/2 + T{ (1/2) * exp[(D-1)/2] } and the raising operator is R = 2t * { 1 - T[ (1/2) * exp[(D-1)/2] ] }, where T(x) is the tree function of A000169. In addition, L = E(D,1) = A(D) where E(x,t) is the e.g.f. of A134991 and A(x) is the e.g.f. of A000311, so L = sum(j=1,...) A000311(j) * D^j / j! also. The polynomials and operators can be generalized through A134991.
Also the Bell transform of A153881. For the definition of the Bell transform see A264428. - Peter Luschny, Jan 27 2016
Exponential Riordan array [2 - exp(x), 1 + 2*x - exp(x)] belonging to the derivative subgroup of the exponential Riordan group. See the example section for a factorization of this array as an infinite product of arrays. - Peter Bala, Feb 13 2025

Examples

			The triangle begins:
  [1]  1;
  [2] -1,  1;
  [3] -1, -3,  1;
  [4] -1, -1, -6,   1;
  [5] -1,  5,  5, -10,   1;
  [6] -1, 19, 30,  25, -15,   1;
  [7] -1, 49, 49,  70,  70, -21, 1.
P(3,t) = [B(.,-t) + 2t]^3 = B(3,-t) + 3B(2,-t)2t + 3B(1,-t)(2t)^2 + (2t)^3 = (-t + 3t^2 - t^3) + 3(-t + t^2)(2t) + 3(-t)(2t)^2 + (2t)^3 = -t - 3t + t^3.
From _Peter Bala_, Feb 13 2025: (Start)
The array factorizes as an infinite product of lower triangular arrays:
  /  1               \    / 1             \ / 1             \ / 1             \
  | -1   1           |   | -1  1          | | 0 -1          | | 0  1          |
  | -1  -3   1       | = | -1 -2   1      | | 0 -1  1       | | 0  0  1       | ...
  | -1  -1  -6   1   |   | -1 -3  -3  1   | | 0 -1 -2  1    | | 0  0 -1  1    |
  | -1   5   5 -10  1|   | -1 -4  -6 -4  1| | 0 -1 -3 -3  1 | | 0  0 -1 -2  1 |
  |...               |   |...             | |...            | |...            |
where the first array in the product on the right-hand side is A154926. (End)
		

References

  • S. Roman, The Umbral Calculus, Academic Press, New York, 1984.
  • G. Rota, Finite Operator Calculus, Academic Press, New York, 1975.

Crossrefs

Cf. A298673 for the inverse matrix.

Programs

  • Maple
    # The function BellMatrix is defined in A264428.
    # Adds (1,0,0,0, ..) as column 0.
    BellMatrix(n -> `if`(n=0,1,-1), 9); # Peter Luschny, Jan 27 2016
  • Mathematica
    max = 8; s = Series[Exp[t*(-Exp[x]+2*x+1)], {x, 0, max}, {t, 0, max}] // Normal; t[n_, k_] := SeriesCoefficient[s, {x, 0, n}, {t, 0, k}]*n!; Table[t[n, k], {n, 0, max}, {k, 1, n}] // Flatten (* Jean-François Alcover, Apr 23 2014 *)
    BellMatrix[f_Function, len_] := With[{t = Array[f, len, 0]}, Table[BellY[n, k, t], {n, 0, len - 1}, {k, 0, len - 1}]];
    rows = 12;
    M = BellMatrix[If[# == 0, 1, -1] &, rows];
    Table[M[[n, k]], {n, 2, rows}, {k, 2, n}] // Flatten (* Jean-François Alcover, Jun 24 2018, after Peter Luschny *)

Formula

Row polynomials are P(n,t) = Sum_{j=1..n} C(n,j) * t^j = [ Bell(.,-t) + 2t ]^n, umbrally, where Bell(j,t) are the Touchard/Bell/exponential polynomials described in A008277, with P(0,t) = 1.
E.g.f.: exp{ t * [ -exp(x) + 2x + 1] } and [ P(.,t) + P(.,s) ]^n = P(n,s+t).
The lowering operator gives L[P(n,t)] = n * P(n-1,t) = (D-1)/2 * P(n,t) + Sum_{j>=1} j^(j-1) * 2^(-j) / j! * exp(-j/2) * P(n,t + j/2).
The raising operator gives R[P(n,t)] = P(n+1,t) = 2t * { P(n,t) - Sum_{j>=1} j^(j-1) * 2^(-j) / j! * exp(-j/2) * P(n,t + j/2) } .
Therefore P(n+1,t) = 2t * { [ (1+D)/2 * P(n,t) ] - n * P(n-1,t) }.
P(n,1) = (-1)^n * A074051(n) and P(n,-1) = A126617(n).
See Rota, Roman, Mathworld or Wikipedia on Sheffer sequences and umbral calculus for more formulas, including expansion theorems.
From Tom Copeland, Jan 20 2018: (Start)
Define Q(n,z;w) = [Bell(.,w)+z]^n. Then Q(n,z;w) are a sequence of Appell polynomials with e.g.f. exp[(exp(t)-1+z)*w], lowering operator D = d/dz, and raising operator R = z + w*exp(D), and exp[(exp(D)-1)w] z^n = exp[Bell(.,w)D] z^n = Q(n,z;w) = e^(-w) (w d/dw + z)^n e^w = e^(-w) exp(a.w) = exp[(a. - 1)w] with (a.)^k = a_k = (k + z)^n and (a. - 1)^m = sum{k = 0,..,m} (-1)^k a^(m-k). Then P(n,t) = Q(n,2t;-t).
For example, exp[(a. - 1)w] = (a. - 1)^0 + (a. - 1)^1 w + (a. - 1)^2 w^2/2! + ... = a_0 + (a_1 - a_0) w + (a_2 - 2a_1 + a_0) w^2/2! + ... = z^n + [(1+z)^n - z^n] w + [(2+z)^n - 2(1+z)^n + z^n] w^2/2! + ... . (End)
T(n+1, k) = Sum_{i = 0..n} s(n,k)*binomial(n, i)*T(i, k-1), where s(n,i) = 1 if i = n else -1. - Peter Bala, Feb 13 2025

Extensions

More terms from Vincenzo Librandi, Jan 21 2018

A320171 Number of series-reduced rooted identity trees whose leaves are integer partitions whose multiset union is an integer partition of n.

Original entry on oeis.org

1, 2, 5, 11, 29, 82, 247, 782, 2579, 8702, 29975, 104818, 371111, 1327307, 4788687, 17404838, 63669763, 234237605, 866090021, 3216738344, 11995470691, 44894977263, 168582174353, 634939697164, 2398004674911, 9079614633247, 34458722286825, 131059771522401
Offset: 1

Views

Author

Gus Wiseman, Oct 07 2018

Keywords

Comments

A rooted tree is series-reduced if every non-leaf node has at least two branches.
In an identity tree, all branches directly under any given node are different.

Examples

			The a(1) = 1 through a(4) = 11 rooted identity trees:
  (1)  (2)   (3)        (4)
       (11)  (21)       (22)
             (111)      (31)
             ((1)(2))   (211)
             ((1)(11))  (1111)
                        ((1)(3))
                        ((1)(21))
                        ((2)(11))
                        ((1)(111))
                        ((1)((1)(2)))
                        ((1)((1)(11)))
		

Crossrefs

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    gig[m_]:=Prepend[Join@@Table[Union[Sort/@Select[Sort/@Tuples[gig/@mtn],UnsameQ@@#&]],{mtn,Select[mps[m],Length[#]>1&]}],m];
    Table[Sum[Length[gig[y]],{y,IntegerPartitions[n]}],{n,8}]
  • PARI
    WeighT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v,n,(-1)^(n-1)/n))))-1,-#v)}
    seq(n)={my(v=vector(n)); for(n=1, n, v[n]=numbpart(n) + WeighT(v[1..n])[n]); v} \\ Andrew Howroyd, Oct 25 2018

Extensions

Terms a(12) and beyond from Andrew Howroyd, Oct 25 2018

A320289 Number of phylogenetic trees with n labels and no singleton leaves.

Original entry on oeis.org

0, 1, 1, 4, 11, 86, 477, 4810, 40679, 496522, 5662933, 81759910, 1169640551, 19622623190, 336215135973, 6455705990674, 128445712218263, 2785761076726066, 62980942321570981, 1525318051255683598, 38566041706375722071, 1032726237783455193662
Offset: 1

Views

Author

Gus Wiseman, Oct 09 2018

Keywords

Examples

			The a(2) = 1 through a(5) = 11 phylogenetic trees:
  (12)  (123)  (1234)      (12345)
               ((12)(34))  ((12)(345))
               ((13)(24))  ((13)(245))
               ((14)(23))  ((14)(235))
                           ((15)(234))
                           ((23)(145))
                           ((24)(135))
                           ((25)(134))
                           ((34)(125))
                           ((35)(124))
                           ((45)(123))
		

Crossrefs

Programs

  • Mathematica
    numSetPtnsOfType[ptn_]:=Total[ptn]!/Times@@Factorial/@ptn/Times@@Factorial/@Length/@Split[ptn];
    rotf[n_]:=rotf[n]=If[n==1,0,1+Sum[numSetPtnsOfType[p]*Times@@rotf/@p,{p,Select[IntegerPartitions[n],Length[#]>1&]}]];
    Array[rotf,20]
  • PARI
    EulerT(v)={Vec(exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1, -#v)}
    b(n,k)={my(v=vector(n)); for(n=2, n, v[n]=binomial(n+k-1, n) + EulerT(v[1..n])[n]); v}
    seq(n)={my(M=Mat(vectorv(n, k, b(n,k)))); vector(n, k, sum(i=1, k, binomial(k, i)*(-1)^(k-i)*M[i,k]))} \\ Andrew Howroyd, Oct 26 2018
Previous Showing 61-70 of 105 results. Next