cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 104 results. Next

A324168 Number of non-crossing antichains of nonempty subsets of {1,...,n}.

Original entry on oeis.org

1, 2, 5, 19, 120, 1084, 11783, 141110, 1791156, 23646352, 321220257, 4459886776, 63000867229, 902528825332, 13080523942476, 191445447535373, 2825542818304080, 42005234042942228, 628422035415996065, 9454076958795999908, 142933849346150225253, 2170556938059142024688
Offset: 0

Views

Author

Gus Wiseman, Feb 17 2019

Keywords

Comments

An antichain is non-crossing if no pair of distinct parts is of the form {{...x...y...}, {...z...t...}} where x < z < y < t or z < x < t < y.

Examples

			The a(0) = 1 through a(3) = 19 non-crossing antichains:
  {}  {}     {}        {}
      {{1}}  {{1}}     {{1}}
             {{2}}     {{2}}
             {{12}}    {{3}}
             {{1}{2}}  {{12}}
                       {{13}}
                       {{23}}
                       {{123}}
                       {{1}{2}}
                       {{1}{3}}
                       {{2}{3}}
                       {{1}{23}}
                       {{2}{13}}
                       {{3}{12}}
                       {{12}{13}}
                       {{12}{23}}
                       {{13}{23}}
                       {{1}{2}{3}}
                       {{12}{13}{23}}
		

Crossrefs

Cf. A000108 (non-crossing set partitions), A000124, A000372 (antichains), A001006, A001263, A006126 (antichain covers), A014466 (nonempty antichains), A054726 (non-crossing graphs), A099947, A261005, A306438.

Programs

  • Mathematica
    nn=6;
    nonXQ[stn_]:=!MatchQ[stn,{_,{_,x_,_,y_,_},_,{_,z_,_,t_,_},_}/;x
    				
  • PARI
    seq(n)={my(f=O(1)); for(n=2, n, f = 1 + (4*x + x^2)*f^2 - 3*x^2*(1 + x)*f^3); Vec(subst(x*(1 + x^2*f^2 - 3*x^3*f^3), x, x/(1-2*x))/x) } \\ Andrew Howroyd, Jan 20 2023

Formula

Binomial transform of A324167.
G.f.: A(x) = B(x/(1-2*x))/x where B(x)/x is the g.f. of A359984. - Andrew Howroyd, Jan 20 2023

Extensions

Terms a(9) and beyond from Andrew Howroyd, Jan 20 2023

A326360 Number of maximal antichains of nonempty, non-singleton subsets of {1..n}.

Original entry on oeis.org

1, 1, 1, 2, 13, 279, 29820, 123590767
Offset: 0

Views

Author

Gus Wiseman, Jul 01 2019

Keywords

Comments

A set system (set of sets) is an antichain if no element is a subset of any other.

Examples

			The a(1) = 1 through a(4) = 13 maximal antichains:
  {}  {12}  {123}         {1234}
            {12}{13}{23}  {12}{134}{234}
                          {13}{124}{234}
                          {14}{123}{234}
                          {23}{124}{134}
                          {24}{123}{134}
                          {34}{123}{124}
                          {12}{13}{14}{234}
                          {12}{23}{24}{134}
                          {13}{23}{34}{124}
                          {14}{24}{34}{123}
                          {123}{124}{134}{234}
                          {12}{13}{14}{23}{24}{34}
		

Crossrefs

Antichains of nonempty, non-singleton sets are A307249.
Minimal covering antichains are A046165.
Maximal intersecting antichains are A007363.
Maximal antichains of nonempty sets are A326359.

Programs

  • Mathematica
    stableSets[u_,Q_]:=If[Length[u]==0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r==w||Q[r,w]||Q[w,r]],Q]]]];
    fasmax[y_]:=Complement[y,Union@@(Most[Subsets[#]]&/@y)];
    Table[Length[fasmax[stableSets[Subsets[Range[n],{2,n}],SubsetQ]]],{n,0,4}]
  • Python
    # see Ignatov links
    # Dmitry I. Ignatov, Oct 14 2021

Formula

a(n) = Sum_{k=0..n} (-1)^(n-k)*binomial(n,k)*A326359(k) for n >= 2. - Andrew Howroyd, Nov 19 2021

Extensions

a(6) from Andrew Howroyd, Aug 14 2019
a(7) from Dmitry I. Ignatov, Oct 14 2021

A327057 Number of antichains covering a subset of {1..n} where every two covered vertices appear together in some edge (cointersecting).

Original entry on oeis.org

1, 2, 4, 9, 36, 1572, 3750221
Offset: 0

Views

Author

Gus Wiseman, Aug 18 2019

Keywords

Comments

A set-system is a finite set of finite nonempty sets. Its elements are sometimes called edges. The dual of a set-system has, for each vertex, one edge consisting of the indices (or positions) of the edges containing that vertex. For example, the dual of {{1,2},{2,3}} is {{1},{1,2},{2}}. An antichain is a set of sets, none of which is a subset of any other. This sequence counts antichains whose dual is pairwise intersecting.

Examples

			The a(0) = 1 through a(3) = 9 antichains:
  {}  {}     {}       {}
      {{1}}  {{1}}    {{1}}
             {{2}}    {{2}}
             {{1,2}}  {{3}}
                      {{1,2}}
                      {{1,3}}
                      {{2,3}}
                      {{1,2,3}}
                      {{1,2},{1,3},{2,3}}
		

Crossrefs

Antichains are A000372.
The BII-numbers of these set-systems are the intersection of A326704 and A326853.
The covering case is A327020.
Cointersecting set-systems are A327039.

Programs

  • Mathematica
    dual[eds_]:=Table[First/@Position[eds,x],{x,Union@@eds}];
    stableSets[u_,Q_]:=If[Length[u]==0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r==w||Q[r,w]||Q[w,r]],Q]]]];
    stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}];
    Table[Length[Select[stableSets[Subsets[Range[n],{1,n}],SubsetQ],stableQ[dual[#],Intersection[#1,#2]=={}&]&]],{n,0,5}]

Formula

Binomial transform of A327020.

A327062 Number of antichains of distinct sets covering a subset of {1..n} whose dual is a weak antichain.

Original entry on oeis.org

1, 2, 5, 16, 81, 2595
Offset: 0

Views

Author

Gus Wiseman, Aug 18 2019

Keywords

Comments

A set-system is a finite set of finite nonempty sets. Its elements are sometimes called edges. The dual of a set-system has, for each vertex, one edge consisting of the indices (or positions) of the edges containing that vertex. For example, the dual of {{1,2},{2,3}} is {{1},{1,2},{2}}. A weak antichain is a multiset of sets, none of which is a proper subset of any other.

Examples

			The a(0) = 1 through a(3) = 16 antichains:
  {}  {}     {}         {}
      {{1}}  {{1}}      {{1}}
             {{2}}      {{2}}
             {{1,2}}    {{3}}
             {{1},{2}}  {{1,2}}
                        {{1,3}}
                        {{2,3}}
                        {{1},{2}}
                        {{1,2,3}}
                        {{1},{3}}
                        {{2},{3}}
                        {{1},{2,3}}
                        {{2},{1,3}}
                        {{3},{1,2}}
                        {{1},{2},{3}}
                        {{1,2},{1,3},{2,3}}
		

Crossrefs

Antichains are A000372.
The covering case is A319639.
The non-isomorphic multiset partition version is A319721.
The BII-numbers of these set-systems are the intersection of A326910 and A326853.
Set-systems whose dual is a weak antichain are A326968.
The unlabeled version is A327018.

Programs

  • Mathematica
    dual[eds_]:=Table[First/@Position[eds,x],{x,Union@@eds}];
    stableSets[u_,Q_]:=If[Length[u]==0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r==w||Q[r,w]||Q[w,r]],Q]]]];
    stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}];
    Table[Length[Select[stableSets[Subsets[Range[n],{1,n}],SubsetQ],stableQ[dual[#],SubsetQ]&]],{n,0,3}]

A341633 a(n) is the cardinality of the central rank of the free distributive lattice on n generators.

Original entry on oeis.org

1, 2, 4, 24, 621, 492288, 81203064840
Offset: 1

Views

Author

Bruno L. O. Andreotti, Feb 16 2021

Keywords

Comments

Sequence for 2 <= n <= 5 is given in Church (1940); n = 1 obtained trivially from {} - {{}} - {{}, {1}}; n = 6 and n = 7 obtained from the triangle A269699.
a(n) is also provably the number of downward closed subsets of the powerset of {1,2,3,...,n} which have the cardinality 2^(n-1).
If FD(n) (the free distributive lattice on n generators) is rank unimodal for all n, then a(n) is the largest cardinality of any rank of FD(n).
If FD(n) is rank unimodal and Sperner for all n, then a(n) is the width of FD(n). (Consequences provable, antecedents are open questions - e.g., Stanley (1991))
This sequence is related (at least methodologically) to the n-th Dedekind number (A000372), which is obtained from the cardinality of FD(n).
a(n) is also the number of balanced monotone Boolean functions. - Aniruddha Biswas, Nov 22 2024

Examples

			a(4)=24 is obtained from the 24 downsets on the 8th and central rank of FD(4), each containing 8 members (enumeration is arbitrary):
   1  {{},{1},{2},{3},{1,2},{1,3},{2,3},{1,2,3}}
   2  {{},{1},{2},{4},{1,2},{1,4},{2,4},{1,2,4}}
   3  {{},{1},{3},{4},{1,3},{1,4},{3,4},{1,3,4}}
   4  {{},{2},{3},{4},{2,3},{2,4},{3,4},{2,3,4}}
   5  {{},{1},{2},{3},{4},{1,2},{1,3},{2,3}}
   6  {{},{1},{2},{3},{4},{1,2},{1,4},{2,4}}
   7  {{},{1},{2},{3},{4},{1,3},{1,4},{3,4}}
   8  {{},{1},{2},{3},{4},{2,3},{2,4},{3,4}}
   9  {{},{1},{2},{3},{4},{1,2},{1,3},{1,4}}
  10  {{},{1},{2},{3},{4},{1,2},{2,3},{2,4}}
  11  {{},{1},{2},{3},{4},{1,3},{2,3},{3,4}}
  12  {{},{1},{2},{3},{4},{1,4},{2,4},{3,4}}
  13  {{},{1},{2},{3},{4},{1,2},{2,3},{3,4}}
  14  {{},{1},{2},{3},{4},{1,2},{1,4},{3,4}}
  15  {{},{1},{2},{3},{4},{1,2},{1,4},{2,3}}
  16  {{},{1},{2},{3},{4},{1,2},{1,3},{3,4}}
  17  {{},{1},{2},{3},{4},{1,2},{2,4},{3,4}}
  18  {{},{1},{2},{3},{4},{1,2},{1,3},{2,4}}
  19  {{},{1},{2},{3},{4},{1,3},{1,4},{2,3}}
  20  {{},{1},{2},{3},{4},{1,3},{1,4},{2,4}}
  21  {{},{1},{2},{3},{4},{1,3},{2,4},{3,4}}
  22  {{},{1},{2},{3},{4},{1,3},{2,3},{2,4}}
  23  {{},{1},{2},{3},{4},{1,4},{2,3},{3,4}}
  24  {{},{1},{2},{3},{4},{1,4},{2,3},{2,4}}
		

Crossrefs

Programs

  • Python
    # See Andreotti link.

Formula

a(n) = A269699(n, 2^(n-1)).

A006360 Antichains (or order ideals) in the poset 2*2*3*n or size of the distributive lattice J(2*2*3*n).

Original entry on oeis.org

1, 50, 887, 8790, 59542, 307960, 1301610, 4701698, 14975675, 43025762, 113414717, 277904900, 639562508, 1393844960, 2896063220, 5768600412, 11066514565, 20526933442, 36936277875, 64660182026, 110394412610
Offset: 0

Views

Author

Keywords

References

  • J. Berman and P. Koehler, Cardinalities of finite distributive lattices, Mitteilungen aus dem Mathematischen Seminar Giessen, 121 (1976), 103-124.
  • Manfred Goebel, Rewriting Techniques and Degree Bounds for Higher Order Symmetric Polynomials, Applicable Algebra in Engineering, Communication and Computing (AAECC), Volume 9, Issue 6 (1999), 559-573.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Formula

Empirical G.f.: (x+1)*(x^6+36*x^5+279*x^4+594*x^3+279*x^2+36*x+1)/(1-x)^13. - Colin Barker, May 29 2012

Extensions

More terms from Mitch Harris, Jul 16 2000

A006361 Antichains (or order ideals) in the poset 2*2*4*n or size of the distributive lattice J(2*2*4*n).

Original entry on oeis.org

1, 105, 3490, 59542, 650644, 5157098, 32046856, 164489084, 723509159, 2801747767, 9748942554, 30967306114, 90930233726, 249319296218, 643622467414, 1575086681342, 3675063064675, 8215220917795
Offset: 0

Views

Author

Keywords

References

  • J. Berman and P. Koehler, Cardinalities of finite distributive lattices, Mitteilungen aus dem Mathematischen Seminar Giessen, 121 (1976), 103-124.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Formula

Empirical G.f.: (x^10 +88*x^9 +1841*x^8 +13812*x^7 +44050*x^6 +64374*x^5 +44050*x^4 +13812*x^3 +1841*x^2 +88*x +1)/(1-x)^17. - Colin Barker, May 29 2012

Extensions

More terms from Mitch Harris, Jul 16 2000

A006362 Antichains (or order ideals) in the poset 2*2*5*n or size of the distributive lattice J(2*2*5*n).

Original entry on oeis.org

1, 196, 11196, 307960, 5157098, 60112692, 530962446, 3764727340, 22326282261, 114158490576, 515063238810, 2087929609236, 7714649716552, 26285397502428, 83379798088110, 248202756212336, 697998155989501, 1864955619299196
Offset: 0

Views

Author

Keywords

References

  • J. Berman and P. Koehler, Cardinalities of finite distributive lattices, Mitteilungen aus dem Mathematischen Seminar Giessen, 121 (1976), 103-124.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Extensions

More terms from Mitch Harris, Jul 16 2000

A056933 Antichains (or order ideals) in the poset 2*2*6*n or size of the distributive lattice J(2*2*6*n).

Original entry on oeis.org

1, 336, 30900, 1301610, 32046856, 530962446, 6479344016, 61951251333, 485198553532, 3217462615688, 18528857431906, 94529315562186, 434088353496446, 1817613939845670, 7014049051387480, 25167786776727516
Offset: 0

Views

Author

Keywords

References

  • Berman and Koehler, Cardinalities of finite distributive lattices, Mitteilungen aus dem Mathematischen Seminar Giessen, 121 (1976), p. 103-124

Crossrefs

A056934 Antichains (or order ideals) in the poset 2*2*7*n or size of the distributive lattice J(2*2*7*n).

Original entry on oeis.org

1, 540, 75966, 4701698, 164489084, 3764727340, 61951251333, 782318812002, 7946895019096, 67270102239520, 487605585591870, 3092040981805272, 17451258588313354, 88902214572208640, 413569247116248032
Offset: 0

Views

Author

Keywords

References

  • Berman and Koehler, Cardinalities of finite distributive lattices, Mitteilungen aus dem Mathematischen Seminar Giessen, 121 (1976), p. 103-124

Crossrefs

Previous Showing 41-50 of 104 results. Next