cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 101-110 of 193 results. Next

A269947 Triangle read by rows, Stirling cycle numbers of order 3, T(n,n) = 1, T(n,k) = 0 if k<0 or k>n, otherwise T(n,k) = T(n-1,k-1)+(n-1)^3*T(n-1,k), for n>=0 and 0<=k<=n.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 8, 9, 1, 0, 216, 251, 36, 1, 0, 13824, 16280, 2555, 100, 1, 0, 1728000, 2048824, 335655, 15055, 225, 1, 0, 373248000, 444273984, 74550304, 3587535, 63655, 441, 1, 0, 128024064000, 152759224512, 26015028256, 1305074809, 25421200, 214918, 784, 1
Offset: 0

Views

Author

Peter Luschny, Mar 22 2016

Keywords

Examples

			Triangle starts:
1,
0, 1,
0, 1,       1,
0, 8,       9,       1,
0, 216,     251,     36,     1,
0, 13824,   16280,   2555,   100,   1,
0, 1728000, 2048824, 335655, 15055, 225, 1.
		

Crossrefs

Variant: A249677.
Cf. A007318 (order 0), A132393 (order 1), A269944 (order 2).

Programs

  • Maple
    T := proc(n, k) option remember;
        `if`(n=k, 1,
        `if`(k<0 or k>n, 0,
         T(n-1, k-1) + (n-1)^3*T(n-1, k))) end:
    for n from 0 to 6 do seq(T(n,k), k=0..n) od;
  • Mathematica
    T[n_, k_] := T[n, k] = Which[n == k, 1, k < 0 || k > n, 0, True, T[n - 1, k - 1] + (n - 1)^3 T[n - 1, k]];
    Table[T[n, k], {n, 0, 8}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jul 12 2019 *)

Formula

T(n,1) = ((n-1)!)^3 for n>=1 (cf. A000442).
T(n,n-1) = (n*(n-1)/2)^2 for n>=1 (cf. A000537).
Row sums: Product_{k=1..n} ((k-1)^3+1) for n>=0 (cf. A255433).

A269948 Triangle read by rows, Stirling set numbers of order 3, T(n,n) = 1, T(n,k) = 0 if k<0 or k>n, otherwise T(n,k) = T(n-1,k-1)+k^3*T(n-1, k), for n>=0 and 0<=k<=n.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 1, 9, 1, 0, 1, 73, 36, 1, 0, 1, 585, 1045, 100, 1, 0, 1, 4681, 28800, 7445, 225, 1, 0, 1, 37449, 782281, 505280, 35570, 441, 1, 0, 1, 299593, 21159036, 33120201, 4951530, 130826, 784, 1
Offset: 0

Views

Author

Peter Luschny, Mar 22 2016

Keywords

Comments

Also called 3rd central factorial numbers.

Examples

			1,
0, 1,
0, 1, 1,
0, 1, 9,     1,
0, 1, 73,    36,     1,
0, 1, 585,   1045,   100,    1,
0, 1, 4681,  28800,  7445,   225,   1,
0, 1, 37449, 782281, 505280, 35570, 441, 1.
		

Crossrefs

Variant: A098436.
Cf. A007318 (order 0), A048993 (order 1), A269945 (order 2).

Programs

  • Maple
    T := proc(n, k) option remember;
        `if`(n=k, 1,
        `if`(k<0 or k>n, 0,
         T(n-1, k-1) + k^3*T(n-1, k))) end:
    for n from 0 to 9 do seq(T(n,k), k=0..n) od;
  • Mathematica
    T[n_, n_] = 1; T[n_, k_] /; 0 <= k <= n := T[n, k] = T[n - 1, k - 1] + k^3*T[n - 1, k]; T[, ] = 0;
    Table[T[n, k], {n, 0, 8}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jul 25 2019 *)

Formula

T(n,2) = (8^(n-1)-1)/7 for n>=1 (cf. A023001).
T(n,n-1) = (n*(n-1)/2)^2 for n>=1 (cf. A000537).
Row sums: A098437.

A293550 a(n) = Sum_{k=0..n} k^3*binomial(2*n-k,n).

Original entry on oeis.org

0, 1, 11, 69, 354, 1650, 7293, 31213, 130832, 540702, 2212550, 8989090, 36327810, 146228940, 586823265, 2349424125, 9389012160, 37467344310, 149345215290, 594753416790, 2366845396500, 9413555798556, 37423053793026, 148719333293394, 590842248405024, 2346813893147500
Offset: 0

Views

Author

Ilya Gutkovskiy, Oct 11 2017

Keywords

Comments

Main diagonal of iterated partial sums array of cubes (starting with the first partial sums). For nonnegative integers see A002054, for squares see A265612.

Crossrefs

Programs

  • Mathematica
    Table[Sum[k^3 Binomial[2 n - k, n], {k, 0, n}], {n, 0, 25}]
    Table[SeriesCoefficient[x (1 + 4 x + x^2)/(1 - x)^(n + 5), {x, 0, n}], {n, 0, 25}]
    Table[2^(2 n + 1) n^2 (13 n + 7) Gamma[n + 3/2]/(Sqrt[Pi] Gamma[n + 5]), {n, 0, 25}]
    CoefficientList[Series[(6 - 6 Sqrt[1 - 4 x] - 36 x + 24 Sqrt[1 - 4 x] x + 55 x^2 - 19 Sqrt[1 - 4 x] x^2 - 15 x^3 + Sqrt[1 - 4 x] x^3)/(2 Sqrt[1 - 4 x] x^4), {x, 0, 25}], x]
    CoefficientList[Series[(E^(2 x) (36 - 24 x + 13 x^2) BesselI[0, 2 x])/x^2 + (E^(2 x) (-36 + 24 x - 31 x^2 + 13 x^3) BesselI[1, 2 x])/x^3, {x, 0, 25}], x]* Range[0, 25]!

Formula

a(n) = [x^n] x*(1 + 4*x + x^2)/(1 - x)^(n+5).
a(n) = 2^(2*n+1)*n^2*(13*n + 7)*Gamma(n+3/2)/(sqrt(Pi)*Gamma(n+5)).
a(n) ~ 26*4^n/sqrt(Pi*n).

A301912 Numbers k such that the decimal representation of k ends that of the sum of the first k cubes.

Original entry on oeis.org

0, 1, 5, 25, 76, 376, 500, 625, 876, 1876, 2500, 5001, 5625, 9376, 15625, 25001, 40625, 50001, 62500, 65625, 71876, 75001, 90625, 109376, 171876, 265625, 375001, 390625, 500001, 765625, 875001, 890625, 1171876, 2265625, 2890625, 4062500, 4375001, 5000001
Offset: 1

Views

Author

Robert Dawson, Mar 28 2018

Keywords

Comments

For j >= 3, 1 + 5*10^j = A199685(j) is in the sequence, so the sequence is infinite. - Vaclav Kotesovec, Mar 29 2018
From Robert Dawson, Apr 12 2018: (Start)
This sequence is the union of the following ten subsequences.
Terms in have fewer than d digits: they are always terms of the sequence, and always appear elsewhere, as an earlier term of the same subsequence or a related subsequence. (However, the d-th terms of the subsequences are always distinct for any d > 4.) Dashes replace certain solutions to the congruences for small values of d for which certain other divisibility criteria are not met. The integers n_0(d) and n_1(d) are the even and odd zeros of n^2+3n+4 (mod 2^d) (note that by Hensel's Lemma these always exist and each is unique).
(i) p(d) satisfying 2^d| p(d) - n_0(d), 5^d |p(d):
(0,<0>,500,2500,62500,62500,4062500,14062500,...)
(ii) q(d) satisfying 2^{d-1}|q(d)-1, 5^d|q(d) for d != 3:
(0,25,-,<625>,40625,390625,2890625,12890625,...)
(iii) q(d) + 5x10^{d-1} for d != 2:
(5,-, 625,5625,90625, 890625,7890625, 62890625,...)
(iv) q'(d) satisfying 2^{d-1}|q'(d) - n_1(d), 5^d|q'(d), for d != 1,3:
(-,25,-,<625>,15625,265625,2265625,47265625,...)
(v) q'(d) + 5x10^{d-1} for d != 2:
(5,-,625,5625,65625,765625,7265625,97265625,...)
(vi) r(d) satisfying 2^d|r(d), 5^d|r(d)-1 for d >= 2
(-,76,376,9376,<9376>,109376,7109376,87109376,...) = A016090(d)
(vii) r'(d) satisfying 2^d|r'(d) - n_0(d), 5^d|r'(d)-1 for d >= 2:
(-,76,876,1876,71876,171876,1171876,<1171876>,...)
(viii)s(d) := 5x10^{d-1}+1 for d >= 4:
(-,-,-,5001,50001,500001,5000001,50000001,...) = A199685(d-1)
(ix) t(d) satisfying 2^{d-1}|t(d)-n_0(d), 5^d|t(d)-1:
(1,<1>,<1>,<1>,25001,375001,4375001,34375001,...)
(x) t(d) + 5x10^{d-1} for d >= 4:
(-,-,-,5001,75001,875001,9375001,84375001,...)
For d > 4, the sequence A301912 has at most 10 and at least 5 terms with d digits. The maximum is first attained for d=7. The minimum is first attained for d=168. (End)

Examples

			The sum of the first five cubes is 225, which ends in 5, so 5 is in the sequence.
		

Crossrefs

Programs

  • Mathematica
    seq = {}; Do[If[StringTake[ToString[k^2*(k+1)^2/4], -StringLength[ToString[k]]] == ToString[k], seq = Join[seq, {k}]], {k, 0, 1000000}]; seq (* Vaclav Kotesovec, Mar 29 2018 *)
  • Python
    A301912_list, k, n = [], 1, 1
    while len(A301912_list) < 100:
        if n % 10**(len(str(k))) == k:
            A301912_list.append(k)
        k += 1
        n += k**3 # Chai Wah Wu, Mar 30 2018

Extensions

Corrected and extended by Vaclav Kotesovec, Mar 29 2018

A304037 If n = Product (p_j^k_j) then a(n) = Sum (pi(p_j)^k_j), where pi() = A000720.

Original entry on oeis.org

0, 1, 2, 1, 3, 3, 4, 1, 4, 4, 5, 3, 6, 5, 5, 1, 7, 5, 8, 4, 6, 6, 9, 3, 9, 7, 8, 5, 10, 6, 11, 1, 7, 8, 7, 5, 12, 9, 8, 4, 13, 7, 14, 6, 7, 10, 15, 3, 16, 10, 9, 7, 16, 9, 8, 5, 10, 11, 17, 6, 18, 12, 8, 1, 9, 8, 19, 8, 11, 8, 20, 5, 21, 13, 11, 9, 9, 9, 22, 4, 16, 14, 23, 7, 10, 15, 12, 6
Offset: 1

Views

Author

Ilya Gutkovskiy, May 05 2018

Keywords

Examples

			a(72) = 5 because 72 = 2^3*3^2 = prime(1)^3*prime(2)^2 and 1^3 + 2^2 = 5.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := Plus @@ (PrimePi[#[[1]]]^#[[2]]& /@ FactorInteger[n]); a[1] = 0; Table[a[n], {n, 1, 88}]

Formula

If gcd(u,v) = 1 then a(u*v) = a(u) + a(v).
a(p^k) = A000720(p)^k where p is a prime.
a(A002110(m)^k) = 1^k + 2^k + ... + m^k.
As an example:
a(A000040(k)) = k.
a(A006450(k)) = A000040(k).
a(A038580(k)) = A006450(k).
a(A001248(k)) = a(A011757(k)) = A000290(k).
a(A030078(k)) = a(A055875(k)) = A000578(k).
a(A002110(k)) = a(A011756(k)) = A000217(k).
a(A061742(k)) = A000330(k).
a(A115964(k)) = A000537(k).
a(A080696(k)) = A007504(k).
a(A076954(k)) = A001923(k).

A327448 Number of ways the first n cubes can be partitioned into three sets with equal sums.

Original entry on oeis.org

1, 0, 0, 691, 3416, 0, 233, 1168, 0, 8857, 18157, 0, 2176512, 3628118, 0, 3204865, 8031495, 0, 79514209, 205927212, 0, 5152732369, 13493840291, 0
Offset: 23

Views

Author

N. J. A. Sloane, Sep 19 2019

Keywords

Comments

Note the offset.

Examples

			The unique smallest solution (for n = 23) is
27 + 216 + 1000 + 2197 + 5832 + 6859 + 9261 =
1 + 64 + 343 + 512 + 1728 + 4096 + 8000 + 10648 =
8 + 125 + 729 + 1331 + 2744 + 3375 + 4913 + 12167.
		

References

  • Keith F. Lynch, Posting to Math Fun Mailing List, Sep 17 2019.

Crossrefs

Programs

  • Maple
    s:= proc(n) option remember; `if`(n<2, 0, n^3+s(n-1)) end:
    b:= proc(n, x, y) option remember; `if`(n=1, 1, (p-> (l->
          add(`if`(p>l[i], 0, b(n-1, sort(subsop(i=l[i]-p, l))
                [1..2][])), i=1..3))([x, y, s(n)-x-y]))(n^3))
        end:
    a:= n-> `if`(irem(1+s(n), 3, 'q')=0, b(n, q-1, q)/2, 0):
    seq(a(n), n=23..27);  # Alois P. Heinz, Sep 30 2019
  • Mathematica
    s[n_] := s[n] = If[n < 2, 0, n^3 + s[n - 1]];
    b[n_, x_, y_] := b[n, x, y] = If[n == 1, 1, With[{p = n^3}, Sum[If[p > #[[i]], 0, b[n - 1, Sequence @@ Sort[ReplacePart[#, i -> #[[i]] - p]][[1 ;; 2]]]], {i, 1, 3}]]&[{x, y, s[n] - x - y}]];
    a[n_] := a[n] = If[q = Quotient[1 + s[n], 3]; Mod[1 + s[n], 3] == 0, b[n, q - 1, q]/2, 0];
    Table[Print[n, " ", a[n]]; a[n], {n, 23, 34}] (* Jean-François Alcover, Nov 08 2020, after Alois P. Heinz *)

Formula

a(n) > 0 => n in { A007494 }. - Alois P. Heinz, Sep 30 2019

Extensions

a(32), a(33), a(35) recomputed and a(36)-a(38) added by Alois P. Heinz, Sep 30 2019
a(39)-a(46) from Bert Dobbelaere, May 15 2021

A329708 Triangle, read by rows, where the n-th row lists the (2n+1) coefficients of (1+2*x+...+(n+1)*x^n)^2.

Original entry on oeis.org

1, 1, 4, 4, 1, 4, 10, 12, 9, 1, 4, 10, 20, 25, 24, 16, 1, 4, 10, 20, 35, 44, 46, 40, 25, 1, 4, 10, 20, 35, 56, 70, 76, 73, 60, 36, 1, 4, 10, 20, 35, 56, 84, 104, 115, 116, 106, 84, 49, 1, 4, 10, 20, 35, 56, 84, 120, 147, 164, 170, 164, 145, 112, 64
Offset: 0

Views

Author

Seiichi Manyama, Feb 29 2020

Keywords

Examples

			Triangle begins:
  1;
  1, 4,  4;
  1, 4, 10, 12,  9;
  1, 4, 10, 20, 25, 24, 16;
  1, 4, 10, 20, 35, 44, 46, 40, 25;
  ...
		

Crossrefs

Row sums give A000537(n+1).
T(n,2n) gives A000290(n+1).

Programs

  • Mathematica
    row[n_]:=CoefficientList[Series[(Sum[(i+1)x^i,{i,0,n}])^2,{x,0,2n}],x]; Array[row,8,0]//Flatten (* Stefano Spezia, Feb 15 2025 *)
  • PARI
    for(n=0, 10, print(Vecrev(sum(k=0, n, (k+1)*x^k)^2), ", "))

Formula

T(n,k) = A000292(k+1) for k=0..n.
Sum_{k=0..2n} (-1)^k * T(n,k) = A008794(n+2). - Alois P. Heinz, Feb 14 2025

A364269 a(n) = Sum_{k=1..n} k^3*sigma_2(k), where sigma_2 is A001157.

Original entry on oeis.org

1, 41, 311, 1655, 4905, 15705, 32855, 76375, 142714, 272714, 435096, 797976, 1171466, 1857466, 2734966, 4131702, 5556472, 8210032, 10692990, 15060990, 19691490, 26186770, 32635280, 44385680, 54557555, 69497155, 85637215, 108686815, 129222353, 164322353
Offset: 1

Views

Author

Seiichi Manyama, Oct 20 2023

Keywords

Crossrefs

Programs

  • Mathematica
    Accumulate[Table[n^3*DivisorSigma[2, n], {n, 1, 30}]] (* Amiram Eldar, Oct 20 2023 *)
  • PARI
    f(n, m) = (subst(bernpol(m+1, x), x, n+1)-subst(bernpol(m+1, x), x, 0))/(m+1);
    a(n, s=3, t=2) = sum(k=1, n, k^(s+t)*f(n\k, s));
    
  • Python
    def A364269(n): return sum(k*(k**2*(m:=n//k)*(m+1)>>1)**2 for k in range(1,n+1)) # Chai Wah Wu, Oct 20 2023
    
  • Python
    from math import isqrt
    def A364269(n): return ((((s:=isqrt(n))*(s+1))**4*(1-s*(s+1<<1))>>2) + sum(((q:=n//k)*(q+1))**2*k**3*(3*k**2+(q*(q+1<<1)-1)) for k in range(1,s+1)))//12 # Chai Wah Wu, Oct 21 2023

Formula

a(n) = Sum_{k=1..n} k^5 * A000537(floor(n/k)).
a(n) ~ (zeta(3)/6) * n^6. - Amiram Eldar, Oct 20 2023

A071910 a(n) = t(n)*t(n+1)*t(n+2), where t() are the triangular numbers.

Original entry on oeis.org

0, 18, 180, 900, 3150, 8820, 21168, 45360, 89100, 163350, 283140, 468468, 745290, 1146600, 1713600, 2496960, 3558168, 4970970, 6822900, 9216900, 12273030, 16130268, 20948400, 26910000, 34222500, 43120350, 53867268, 66758580, 82123650, 100328400, 121777920
Offset: 0

Views

Author

N. J. A. Sloane, Jun 13 2002

Keywords

Comments

a(n) is also the number of three-dimensional cage assemblies such that the assembly is not a cube. See also A052149 for the two-dimensional version and to A059827 for the non-exclusive version. - Alejandro Rodriguez, Oct 20 2020

Crossrefs

Cf. A006542, (first differences of a(n) /18) A006414, (second differences of a(n) /18) A006322, (third differences of a(n) /18) A004068, (fourth differences of a(n) /18) A005891, (fifth differences of a(n) /18) A008706.

Programs

  • Mathematica
    Join[{0},Times@@@Partition[Accumulate[Range[40]],3,1]] (* or *) LinearRecurrence[{7,-21,35,-35,21,-7,1},{0,18,180,900,3150,8820,21168},40] (* Harvey P. Dale, Aug 08 2025 *)
  • PARI
    t(n) = n*(n+1)/2;
    a(n) = t(n)*t(n+1)*t(n+2); \\ Michel Marcus, Oct 21 2015

Formula

a(n) = 18*A006542(n+3). - Vladeta Jovovic, Jun 14 2002
G.f.: 18*x*(1+3*x+x^2)/(1-x)^7. - Vladeta Jovovic, Jun 14 2002
a(n) = ((n+1)*(n+2))^3/8 - Sum_{i=1..n+1} i^3. - Jon Perry, Feb 13 2004
a(n) = C(2+n, n)*C(3+n, 1+n)*C(4+n, 2+n). - Zerinvary Lajos, Jul 29 2005
a(n) = A059827(n+1) - A000537(n+1). - Michel Marcus, Oct 21 2015

A081175 Numbers of the form Sum_{i=1..k} i^j, j >= 1, k >= 1.

Original entry on oeis.org

1, 3, 5, 6, 9, 10, 14, 15, 17, 21, 28, 30, 33, 36, 45, 55, 65, 66, 78, 91, 98, 100, 105, 120, 129, 136, 140, 153, 171, 190, 204, 210, 225, 231, 253, 257, 276, 285, 300, 325, 351, 354, 378, 385, 406, 435, 441, 465, 496, 506, 513, 528, 561, 595, 630, 650, 666, 703
Offset: 1

Views

Author

N. J. A. Sloane, Apr 18 2003

Keywords

Comments

Union of sums of k-th powers, for k >= 1.

Examples

			30 is in the set because 30 = 1^2 + 2^2 + 3^2 + 4^2 (j=2, k=4).
		

Crossrefs

For primes in this sequence see A164307.

Programs

  • Maple
    N:= 1000: # to get all terms <= N
    A:=select(`<=`,{1, seq(seq(sum(i^k,i=1..m), m=2..floor((N*(k+1))^(1/(k+1)))),k = 1 ..ilog2(N-1))},N):
    sort(convert(A,list)); # Robert Israel, Jan 26 2015
  • Mathematica
    Take[ Union[ Flatten[ Table[ Sum[ i^j, {i, 1, n}], {j, 1, 9}, {n, 1, 40}]]], 60]

Extensions

Corrected and extended by Robert G. Wilson v, May 08 2003
Previous Showing 101-110 of 193 results. Next