cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 26 results. Next

A134158 a(n) = 1 + 27n + 252n^2 + 882n^3 + 1029n^4.

Original entry on oeis.org

1, 2191, 24583, 109513, 324013, 759811, 1533331, 2785693, 4682713, 7414903, 11197471, 16270321, 22898053, 31369963, 42000043, 55126981, 71114161, 90349663, 113246263, 140241433, 171797341, 208400851, 250563523, 298821613, 353736073, 415892551, 485901391
Offset: 0

Views

Author

Artur Jasinski, Oct 10 2007

Keywords

Comments

A000540(n) is divisible by A000330(n) if and only if n is congruent to {1,2,4,5} mod 7 (see A047380).
This sequence is the case when n is congruent to 1 mod 7.
A134159 is the case when n is congruent to 2 mod 7.
A134160 is the case when n is congruent to 4 mod 7.
A134161 is the case when n is congruent to 5 mod 7.
A133180 is the union of this sequence, A134159, A134160, and A134161.

Crossrefs

Programs

  • Mathematica
    Table[(3(7n + 1)^4 + 6(7n + 1)^3 - 3 (7n + 1) + 1)/7, {n, 0, 100}] (* or *) Table[Sum[k^6, {k, 1, 7n + 1}]/Sum[k^2, {k, 1, 7n + 1}], {n, 0, 100}] (* Artur Jasinski *)
  • PARI
    Vec((1 + 2186*x + 13638*x^2 + 8498*x^3 + 373*x^4) / (1 - x)^5 + O(x^30)) \\ Colin Barker, Aug 12 2017

Formula

a(n) = (3(7n + 1)^4 + 6(7n + 1)^3 - 3 (7n + 1) + 1)/7.
a(n) = (Sum_{k=1..7n+1} k^6) / (Sum_{k=1..7n+1} k^2).
G.f.: -(1 + 2186*x + 13638*x^2 + 8498*x^3 + 373*x^4)/(-1+x)^5. - R. J. Mathar, Nov 14 2007
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5) for n>4. - Colin Barker, Aug 12 2017

A254645 Fourth partial sums of sixth powers (A001014).

Original entry on oeis.org

1, 68, 995, 7672, 40614, 166992, 571626, 1701480, 4534959, 11050468, 24997973, 53113424, 106959580, 205628736, 379603812, 676144944, 1166649837, 1956528420, 3198236503, 5108229896, 7988730530, 12255340240
Offset: 1

Views

Author

Luciano Ancora, Feb 05 2015

Keywords

Examples

			First differences:   1, 63, 665, 3367, 11529,  31031, ...  (A022522)
--------------------------------------------------------------------------
The sixth powers:    1, 64, 729, 4096, 15625,  46656, ...  (A001014)
--------------------------------------------------------------------------
First partial sums:  1, 65, 794, 4890, 20515,  67171, ...  (A000540)
Second partial sums: 1, 66, 860, 5750, 26265,  93436, ...  (A101093)
Third partial sums:  1, 67, 927, 6677, 32942, 126378, ...  (A101099)
Fourth partial sums: 1, 68, 995, 7672, 40614, 166992, ...  (this sequence)
		

Crossrefs

Cf. A254644 (fourth partial sums of fifth powers), A254646 (fourth partial sums of seventh powers).

Programs

  • GAP
    List([1..30], n-> Binomial(n+4,5)*(n+2)*((n^2+4*n-1)^2-2)/42); # G. C. Greubel, Aug 28 2019
  • Magma
    [Binomial(n+4,5)*(n+2)*((n^2+4*n-1)^2-2)/42: n in [1..30]]; // G. C. Greubel, Aug 28 2019
    
  • Maple
    seq(binomial(n+4,5)*(n+2)*((n^2+4*n-1)^2-2)/42, n=1..30); # G. C. Greubel, Aug 28 2019
  • Mathematica
    Table[n (1 + n) (2 + n)^2 (3 + n) (4 + n) (- 1 - 8 n + 14 n^2 + 8 n^3 + n^4)/5040, {n, 22}] (* or *)
    Accumulate[Accumulate[Accumulate[Accumulate[Range[22]^6]]]] (* or *)
    CoefficientList[Series[(- 1 - 57 x - 302 x^2 - 302 x^3 - 57 x^4 - x^5)/(- 1 + x)^11, {x, 0, 21}], x]
    Nest[Accumulate,Range[30]^6,4] (* or *) LinearRecurrence[{11,-55,165,-330,462,-462,330,-165,55,-11,1},{1,68,995,7672,40614,166992,571626,1701480,4534959,11050468,24997973},30] (* Harvey P. Dale, Dec 27 2015 *)
  • PARI
    vector(30, n, binomial(n+4,5)*(n+2)*((n^2+4*n-1)^2-2)/42) \\ G. C. Greubel, Aug 28 2019
    
  • Sage
    [binomial(n+4,5)*(n+2)*((n^2+4*n-1)^2-2)/42 for n in (1..30)] # G. C. Greubel, Aug 28 2019
    

Formula

G.f.: x*(1 + 57*x + 302*x^2 + 302*x^3 + 57*x^4 + x^5)/(1 - x)^11.
a(n) = n*(1 + n)*(2 + n)^2*(3 + n)*(4 + n)*(- 1 - 8*n + 14*n^2 + 8*n^3 + n^4)/5040.
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) + n^6.

A254683 Fifth partial sums of sixth powers (A001014).

Original entry on oeis.org

1, 69, 1064, 8736, 49350, 216342, 787968, 2489448, 7024407, 18074875, 43072848, 96186272, 203145852, 408774588, 788378400, 1464523344, 2631173181, 4587701601, 7785938104, 12894168000, 20882898530, 33138238770
Offset: 1

Views

Author

Luciano Ancora, Feb 12 2015

Keywords

Examples

			First differences:   1, 63,  665, 3367, 11529, ...  (A022522)
--------------------------------------------------------------------------
The sixth powers:    1, 64,  729, 4096, 15625, ...  (A001014)
--------------------------------------------------------------------------
First partial sums:  1, 65,  794, 4890, 20515, ...  (A000540)
Second partial sums: 1, 66,  860, 5750, 26265, ...  (A101093)
Third partial sums:  1, 67,  927, 6677, 32942, ...  (A254640)
Fourth partial sums: 1, 68,  995, 7672, 40614, ...  (A254645)
Fifth partial sums:  1, 69, 1064, 8736, 49350, ...  (this sequence)
		

Crossrefs

Programs

  • Mathematica
    Table[n (1 + n) (2 + n) (3 + n) (4 + n) (5 + n) (5 + 2*n) (- 3 + 5*n + n^2) (4 + 15 n + 3 n^2)/332640, {n,22}] (* or *)
    CoefficientList[Series[(1 + 57 x + 302 x^2 + 302 x^3 + 57 x^4 + x^5)/(- 1 + x)^12, {x,0,21}], x]

Formula

G.f.: (x + 57*x^2 + 302*x^3 + 302*x^4 + 57*x^5 + x^6)/(- 1 + x)^12.
a(n) = n*(1 + n)*(2 + n)*(3 + n)*(4 + n)*(5 + n)*(5 + 2*n)*(- 3 + 5*n + n^2)*(4 + 15*n + 3*n^2)/332640.
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5) + n^6.

A134159 a(n) = 13 + 165*n + 756*n^2 + 1470*n^3 + 1029*n^4.

Original entry on oeis.org

13, 3433, 31591, 130351, 370273, 846613, 1679323, 3013051, 5017141, 7885633, 11837263, 17115463, 23988361, 32748781, 43714243, 57226963, 73653853, 93386521, 116841271, 144459103, 176705713, 214071493, 257071531, 306245611
Offset: 0

Views

Author

Artur Jasinski, Oct 10 2007

Keywords

Comments

A000540(n) is divisible by A000330(n) if and only if n is congruent to {1,2,4,5} mod 7 (see A047380). A134158 is the case when n is congruent to 1 mod 7. A134159 is the case when n is congruent to 2 mod 7. A134160 is the case when n is congruent to 4 mod 7. A134161 is the case when n is congruent to 5 mod 7. A133180 is the union of A134158 and A134159 and A134160 and A134161.

Crossrefs

Programs

  • Mathematica
    Table[(3(7n + 2)^4 + 6(7n + 2)^3 - 3 (7n + 2) + 1)/7, {n, 0, 100}]
    Table[Sum[k^6, {k, 1, 7n + 2}]/Sum[k^2, {k, 1, 7n + 2}], {n, 0, 100}] (* Artur Jasinski *)

Formula

a(n) = (3*(7*n + 2)^4 + 6*(7*n + 2)^3 - 3*(7*n + 2) + 1)/7.
a(n) = (Sum_{k=1..7n+2} k^6) / (Sum_{k=1..7n+2} k^2).
G.f.: -(13+3368*x+14556*x^2+6596*x^3+163*x^4)/(-1+x)^5. - R. J. Mathar, Nov 14 2007

A134160 a(n) = 163 + 1053*n + 2520*n^2 + 2646*n^3 + 1029*n^4.

Original entry on oeis.org

163, 7411, 49981, 180793, 477463, 1042303, 2002321, 3509221, 5739403, 8893963, 13198693, 18904081, 26285311, 35642263, 47299513, 61606333, 78936691, 99689251, 124287373, 153179113, 186837223, 225759151, 270467041, 321507733
Offset: 0

Views

Author

Artur Jasinski, Oct 10 2007

Keywords

Comments

A000540(n) is divisible by A000330(n) if and only n is congruent to {1,2,4,5} mod 7 (see A047380) A134158 is case when n is congruent to 1 mod 7 A134159 is case when n is congruent to 2 mod 7 A134160 is case when n is congruent to 4 mod 7 A134161 is case when n is congruent to 5 mod 7 A133180 is union of A134158 and A134159 and A134160 and A134161

Crossrefs

Programs

  • Mathematica
    Table[(3(7n + 4)^4 + 6(7n + 4)^3 - 3 (7n + 4) + 1)/7, {n, 0, 100}] (*Artur Jasinski*)
    Table[Sum[k^6, {k, 1, 7n + 4}]/Sum[k^2, {k, 1, 7n + 4}], {n, 0, 100}] (*Artur Jasinski*)
    LinearRecurrence[{5,-10,10,-5,1},{163,7411,49981,180793,477463},30] (* Harvey P. Dale, Jul 20 2024 *)
  • PARI
    a(n)=163+1053*n+2520*n^2+2646*n^3+1029*n^4 \\ Charles R Greathouse IV, Oct 07 2015

Formula

a(n) = (3*(7*n + 4)^4 + 6*(7*n + 4)^3 - 3*(7*n + 4) + 1)/7.
a(n) = sum(k=1..7*n+4, k^6) / sum(k=1..7*n+4, k^2).
G.f.: (163+6596*x+14556*x^2+3368*x^3+13*x^4)/(1-x)^5. - Colin Barker, May 25 2012

A254472 Sixth partial sums of sixth powers (A001014).

Original entry on oeis.org

1, 70, 1134, 9870, 59220, 275562, 1063530, 3552978, 10577385, 28652260, 71725108, 167911380, 371057232, 779831820, 1568210220, 3032733564, 5663906745, 10251608346, 18037546450, 30931714450, 51814612980, 84952851750, 136562787270, 215565263550, 334584493425
Offset: 1

Views

Author

Luciano Ancora, Feb 15 2015

Keywords

Examples

			First differences:   1, 63,  665, 3367, 11529, ... (A022522)
--------------------------------------------------------------------------
The sixth powers:    1, 64,  729, 4096, 15625, ... (A001014)
--------------------------------------------------------------------------
First partial sums:  1, 65,  794, 4890, 20515, ... (A000540)
Second partial sums: 1, 66,  860, 5750, 26265, ... (A101093)
Third partial sums:  1, 67,  927, 6677, 32942, ... (A254640)
Fourth partial sums: 1, 68,  995, 7672, 40614, ... (A254645)
Fifth partial sums:  1, 69, 1064, 8736, 49350, ... (A254683)
Sixth partial sums:  1, 70, 1134, 9870, 59220, ... (this sequence)
		

Crossrefs

Programs

  • Magma
    [n*(1+n)*(2+n)*(3+n)^2*(4+n)*(5+n)*(6+n)*(-3+5*n+n^2)* (3+7*n+n^2)/665280: n in [1..30]]; // Vincenzo Librandi, Feb 15 2015
    
  • Mathematica
    Table[n (1 + n) (2 + n) (3 + n)^2 (4 + n) (5 + n) (6 + n) (- 3 + 5 n + n^2) (3 + 7 n + n^2)/665280, {n, 22}] (* or *) CoefficientList[Series[(- 1 - 57 x - 302 x^2 - 302 x^3 - 57 x^4 - x^5)/(- 1 + x)^13, {x, 0, 28}], x]
    Nest[Accumulate,Range[30]^6,6] (* Harvey P. Dale, Oct 02 2015 *)
  • PARI
    vector(50,n,n*(1 + n)*(2 + n)*(3 + n)^2*(4 + n)*(5 + n)*(6 + n)*(-3 + 5*n + n^2)*(3 + 7*n + n^2)/665280) \\ Derek Orr, Feb 19 2015

Formula

G.f.: (-x - 57*x^2 - 302*x^3 - 302*x^4 - 57*x^5 - x^6)/(- 1 + x)^13.
a(n) = n*(1 + n)*(2 + n)*(3 + n)^2*(4 + n)*(5 + n)*(6 + n)*(-3 + 5*n + n^2)*(3 + 7*n + n^2)/665280.
a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6) + n^6.
Sum_{n>=1} 1/a(n) = 25622179/76545 - 3080*Pi^2/81 + 149600*Pi*tan(sqrt(37)*Pi/2)/(243*sqrt(37)). - Amiram Eldar, Jan 27 2022

A133180 a(n) = (Sum_{k=1..A047380(n)} k^6) / (Sum_{k=1..A047380(n)} k^2).

Original entry on oeis.org

1, 13, 163, 373, 2191, 3433, 7411, 10363, 24583, 31591, 49981, 61723, 109513, 130351, 180793, 210901, 324013, 370273, 477463, 539041, 759811, 846613, 1042303, 1151983, 1533331, 1679323, 2002321, 2180263, 2785693, 3013051, 3509221
Offset: 1

Views

Author

Artur Jasinski, Oct 10 2007

Keywords

Comments

A000540(n) is divisible by A000330(n) if and only if n is congruent to {1,2,4,5} mod 7 (see A047380).
This sequence is the union of A134158 and A134159 and A134160 and A134161.

Crossrefs

Programs

  • Mathematica
    a = {}; Do[j = Sum[k^6, {k, 1, n}]/Sum[k^2, {k, 1, n}]; If[IntegerQ[j], AppendTo[a, j]], {n, 1, 100}] ; a (*Artur Jasinski*)
    Select[Table[Sum[k^6,{k,n}]/Sum[k^2,{k,n}],{n,100}],IntegerQ] (* Harvey P. Dale, Nov 26 2019 *)

Formula

a(n) = A000540(A047380(n)) / A000330(A047380(n)). - Jason Yuen, Sep 23 2024

Extensions

Offset corrected by Jason Yuen, Sep 23 2024

A134161 a(n) = 373 + 1947*n + 3780*n^2 + 3234*n^3 + 1029*n^4.

Original entry on oeis.org

373, 10363, 61723, 210901, 539041, 1151983, 2180263, 3779113, 6128461, 9432931, 13921843, 19849213, 27493753, 37158871, 49172671, 63887953, 81682213, 102957643, 128141131, 157684261, 192063313, 231779263, 277357783, 329349241
Offset: 0

Views

Author

Artur Jasinski, Oct 10 2007

Keywords

Comments

A000540(n) is divisible by A000330(n) if and only n is congruent to {1,2,4,5} mod 7 (see A047380) A134158 is case when n is congruent to 1 mod 7 A134159 is case when n is congruent to 2 mod 7 A134160 is case when n is congruent to 4 mod 7 A134161 is case when n is congruent to 5 mod 7 A133180 is union of A134158 and A134159 and A134160 and A134161.

Crossrefs

Programs

  • Mathematica
    Table[(3(7n + 5)^4 + 6(7n + 5)^3 - 3 (7n + 5) + 1)/7, {n, 0, 100}]
    Table[Sum[k^6, {k, 1, 7n + 5}]/Sum[k^2, {k, 1, 7n + 5}], {n, 0, 100}]
    LinearRecurrence[{5,-10,10,-5,1},{373,10363,61723,210901,539041},100] (* Harvey P. Dale, Nov 25 2012 *)
  • PARI
    a(n)=373+1947*n+3780*n^2+3234*n^3+1029*n^4 \\ Charles R Greathouse IV, Oct 07 2015

Formula

a(n) = (3*(7*n + 5)^4 + 6*(7*n + 5)^3 - 3*(7*n + 5) + 1)/7.
a(n) = (Sum_{k=1..7*n+5} k^6) / (Sum_{k=1..7*n+5} k^2).
G.f.: -(373+8498*x+13638*x^2+2186*x^3+x^4)/(-1+x)^5. - R. J. Mathar, Nov 14 2007
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5) with a(0)=373, a(1)=10363, a(2)=61723, a(3)=210901, and a(4)=539041. - Harvey P. Dale, Nov 25 2012

A254872 Seventh partial sums of sixth powers (A001014).

Original entry on oeis.org

1, 71, 1205, 11075, 70295, 345857, 1409387, 4962365, 15539750, 44192010, 115917118, 283828498, 654885730, 1434717550, 3002927770, 6035661334, 11699568079, 21951176425, 39988722875, 70920437325, 122735050305
Offset: 1

Views

Author

Luciano Ancora, Feb 17 2015

Keywords

Examples

			First differences:    1, 63,  665,  3367, 11529, ... (A022522)
--------------------------------------------------------------------
The sixth powers:     1, 64,  729,  4096, 15625, ... (A001014)
--------------------------------------------------------------------
First partial sums:   1, 65,  794,  4890, 20515, ... (A000540)
Second partial sums:  1, 66,  860,  5750, 26265, ... (A101093)
Third partial sums:   1, 67,  927,  6677, 32942, ... (A254640)
Fourth partial sums:  1, 68,  995,  7672, 40614, ... (A254645)
Fifth partial sums:   1, 69, 1064,  8736, 49350, ... (A254683)
Sixth partial sums:   1, 70, 1134,  9870, 59220, ... (A254472)
Seventh partial sums: 1, 71, 1205, 11075, 70295, ... (this sequence)
		

Crossrefs

Programs

  • Mathematica
    Table[(n (1 + n) (2 + n) (3 + n) (4 + n) (5 + n) (6 + n) (7 + n) (7 + 2 n) (- 49 + 147 n^2 + 42 n^3 + 3 n^4))/51891840, {n, 21}] (* or *)
    CoefficientList[Series[(1 + 57 x + 302 x^2 + 302 x^3 + 57 x^4 + x^5)/(- 1 + x)^14, {x, 0, 20}], x]

Formula

G.f.: (x + 57*x^2 + 302*x^3 + 302*x^4 + 57*x^5 + x^6)/(- 1 + x)^14.
a(n) = (n*(1 + n)*(2 + n)*(3 + n)*(4 + n)*(5 + n)*(6 + n)*(7 + n)*(7 + 2*n)*(- 49 + 147*n^2 + 42*n^3 + 3*n^4))/51891840.
a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7*a(n-6) + a(n-7) + n^6.

A123094 Sum of first n 12th powers.

Original entry on oeis.org

0, 1, 4097, 535538, 17312754, 261453379, 2438235715, 16279522916, 84998999652, 367428536133, 1367428536133, 4505856912854, 13421957361110, 36720042483591, 93413954858887, 223160292749512, 504635269460168, 1087257506689929, 2244088888116105, 4457403807182266
Offset: 0

Views

Author

Zerinvary Lajos, Sep 27 2006

Keywords

Crossrefs

Sequences of the form Sum_{j=0..n} j^m : A000217 (m=1), A000330 (m=2), A000537 (m=3), A000538 (m=4), A000539 (m=5), A000540 (m=6), A000541 (m=7), A000542 (m=8), A007487 (m=9), A023002 (m=10), A123095 (m=11), this sequence (m=12), A181134 (m=13).

Programs

  • Magma
    [(&+[j^12: j in [0..n]]): j in [0..30]]; // G. C. Greubel, Jul 21 2021
  • Maple
    [seq(add(i^12, i=1..n), n=0..18)];
  • Mathematica
    Table[Sum[k^12, {k, n}], {n, 0, 30}] (* Vladimir Joseph Stephan Orlovsky, Aug 14 2008 *)
    Accumulate[Range[0,30]^12]  (* Harvey P. Dale, Apr 26 2011 *)
  • Python
    A123094_list, m = [0], [479001600, -2634508800, 6187104000, -8083152000, 6411968640, -3162075840, 953029440, -165528000, 14676024, -519156, 4094, -1, 0 , 0]
    for _ in range(10**2):
        for i in range(13):
            m[i+1]+= m[i]
        A123094_list.append(m[-1]) # Chai Wah Wu, Nov 05 2014
    
  • Sage
    [bernoulli_polynomial(n,13)/13 for n in range(1, 30)] # Zerinvary Lajos, May 17 2009
    

Formula

a(n) = n*A123095(n) - Sum_{i=0..n-1} A123095(i). - Bruno Berselli, Apr 27 2010
a(n) = n * (n+1) * (2*n+1) * (105*n^10 +525*n^9 +525*n^8 -1050*n^7 -1190*n^6 +2310*n^5 +1420*n^4 -3285*n^3 -287*n^2 +2073*n -691)/2730. - Bruno Berselli, Oct 03 2010
a(n) = (-1)*Sum_{j=1..12} j*Stirling1(n+1,n+1-j)*Stirling2(n+12-j,n). - Mircea Merca, Jan 25 2014
Previous Showing 11-20 of 26 results. Next