cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-16 of 16 results.

A123094 Sum of first n 12th powers.

Original entry on oeis.org

0, 1, 4097, 535538, 17312754, 261453379, 2438235715, 16279522916, 84998999652, 367428536133, 1367428536133, 4505856912854, 13421957361110, 36720042483591, 93413954858887, 223160292749512, 504635269460168, 1087257506689929, 2244088888116105, 4457403807182266
Offset: 0

Views

Author

Zerinvary Lajos, Sep 27 2006

Keywords

Crossrefs

Sequences of the form Sum_{j=0..n} j^m : A000217 (m=1), A000330 (m=2), A000537 (m=3), A000538 (m=4), A000539 (m=5), A000540 (m=6), A000541 (m=7), A000542 (m=8), A007487 (m=9), A023002 (m=10), A123095 (m=11), this sequence (m=12), A181134 (m=13).

Programs

  • Magma
    [(&+[j^12: j in [0..n]]): j in [0..30]]; // G. C. Greubel, Jul 21 2021
  • Maple
    [seq(add(i^12, i=1..n), n=0..18)];
  • Mathematica
    Table[Sum[k^12, {k, n}], {n, 0, 30}] (* Vladimir Joseph Stephan Orlovsky, Aug 14 2008 *)
    Accumulate[Range[0,30]^12]  (* Harvey P. Dale, Apr 26 2011 *)
  • Python
    A123094_list, m = [0], [479001600, -2634508800, 6187104000, -8083152000, 6411968640, -3162075840, 953029440, -165528000, 14676024, -519156, 4094, -1, 0 , 0]
    for _ in range(10**2):
        for i in range(13):
            m[i+1]+= m[i]
        A123094_list.append(m[-1]) # Chai Wah Wu, Nov 05 2014
    
  • Sage
    [bernoulli_polynomial(n,13)/13 for n in range(1, 30)] # Zerinvary Lajos, May 17 2009
    

Formula

a(n) = n*A123095(n) - Sum_{i=0..n-1} A123095(i). - Bruno Berselli, Apr 27 2010
a(n) = n * (n+1) * (2*n+1) * (105*n^10 +525*n^9 +525*n^8 -1050*n^7 -1190*n^6 +2310*n^5 +1420*n^4 -3285*n^3 -287*n^2 +2073*n -691)/2730. - Bruno Berselli, Oct 03 2010
a(n) = (-1)*Sum_{j=1..12} j*Stirling1(n+1,n+1-j)*Stirling2(n+12-j,n). - Mircea Merca, Jan 25 2014

A123095 Sum of first n 11th powers.

Original entry on oeis.org

0, 1, 2049, 179196, 4373500, 53201625, 415998681, 2393325424, 10983260016, 42364319625, 142364319625, 427675990236, 1170684360924, 2962844754961, 7012409924625, 15662165784000, 33254351828416, 67526248136049, 131794658215281, 248284917113500, 453084917113500
Offset: 0

Views

Author

Zerinvary Lajos, Sep 27 2006

Keywords

Crossrefs

Sequences of the form Sum_{j=0..n} j^m : A000217 (m=1), A000330 (m=2), A000537 (m=3), A000538 (m=4), A000539 (m=5), A000540 (m=6), A000541 (m=7), A000542 (m=8), A007487 (m=9), A023002 (m=10), this sequence (m=11), A123094 (m=12), A181134 (m=13).

Programs

  • Magma
    [(&+[j^11: j in [0..n]]): n in [0..30]]; // G. C. Greubel, Jul 21 2021
    
  • Maple
    [seq(add(i^11, i=1..n), n=0..20)];
    a[0]:=0:a[1]:=1:for n from 2 to 50 do a[n]:=a[n-1]+n^11 od: seq(a[n], n=0..13); # Zerinvary Lajos, Feb 22 2008
  • Mathematica
    Table[Sum[k^11, {k, n}], {n, 0, 30}] (* Vladimir Joseph Stephan Orlovsky, Aug 14 2008 *)
    Accumulate[Range[0,20]^11] (* Harvey P. Dale, Sep 17 2021 *)
  • Python
    A123095_list, m = [0], [39916800, -199584000, 419126400, -479001600, 322494480, -129230640, 29607600, -3498000, 171006, -2046, 1, 0 , 0]
    for _ in range(10**2):
        for i in range(12):
            m[i+1]+= m[i]
        A123095_list.append(m[-1]) # Chai Wah Wu, Nov 05 2014
    
  • Sage
    [(bernoulli_polynomial(n+1, 12) - bernoulli(12))/12  for n in (0..30)] # G. C. Greubel, Jul 21 2021

Formula

a(n) = n*A023002(n) - Sum_{i=0..n-1} A023002(i). - Bruno Berselli, Apr 27 2010
a(n) = n^2*(n+1)^2*(2*n^8 +8*n^7 +4*n^6 -16*n^5 -5*n^4 +26*n^3 -3*n^2 -20*n +10)/24. - Bruno Berselli, Oct 03 2010
G.f.: x*(x^10 +2036*x^9 +152637*x^8 +2203488*x^7 +9738114*x^6 +15724248*x^5 +9738114*x^4 +2203488*x^3 +152637*x^2 +2036*x +1)/(1-x)^13. - Colin Barker, May 27 2012
a(n) = (-1)*Sum_{j=1..11} j*Stirling1(n+1,n+1-j)*Stirling2(n+11-j,n). - Mircea Merca, Jan 25 2014
a(n) = 1728*A006542(n+2)^2 + 216*A288876(n-2) + 96*A006542(n+2) + A000537(n). - Yasser Arath Chavez Reyes, May 25 2024

A181134 Sum of 13th powers: a(n) = Sum_{j=0..n} j^13.

Original entry on oeis.org

0, 1, 8193, 1602516, 68711380, 1289414505, 14350108521, 111239118928, 660994932816, 3202860761145, 13202860761145, 47725572905076, 154718778284148, 457593884876401, 1251308658130545, 3197503726489920
Offset: 0

Views

Author

Bruno Berselli, Oct 05 2010 - Oct 18 2010

Keywords

Comments

This form of recurrence is a general property of the array in A103438 (sums of the first n-th powers).

Crossrefs

Cf. A010801.
Sequences of the form Sum_{j=0..n} j^m : A000217 (m=1), A000330 (m=2), A000537 (m=3), A000538 (m=4), A000539 (m=5), A000540 (m=6), A000541 (m=7), A000542 (m=8), A007487 (m=9), A023002 (m=10), A123095 (m=11), A123094 (m=12), A181134 (m=13).

Programs

  • Magma
    [(&+[j^13: j in [0..n]]): n in [0..30]]; // G. C. Greubel, Jul 21 2021
    
  • Maple
    A181134 := proc(n) (bernoulli(14,n+1) - bernoulli(14))/14 ; end proc: seq(A181134(n), n=0..10); # R. J. Mathar, Oct 14 2010
  • Mathematica
    Accumulate[Range[0,20]^13] (* Harvey P. Dale, Oct 30 2017 *)
  • Python
    A181134_list, m = [0], [6227020800, -37362124800, 97037740800, -142702560000, 130456085760, -76592355840, 28805736960, -6711344640, 901020120, -60780720, 1569750, -8190, 1, 0 , 0]
    for _ in range(10**2):
        for i in range(14):
            m[i+1]+= m[i]
        A181134_list.append(m[-1]) # Chai Wah Wu, Nov 06 2014
    
  • Sage
    [(bernoulli_polynomial(n+1, 14) - bernoulli(14))/14  for n in (0..30)] # G. C. Greubel, Jul 21 2021

Formula

For n>0, a(n) = n*A123094(n) - Sum_{i=0..n-1} A123094(i), where Sum_{i=0..n-1} A123094(i) = A253712(n-1) = (n-1)*n^2*(n+1)*(30*n^10 - 425*n^8 + 2578*n^6 - 8147*n^4 + 12874*n^2 - 7601)/5460.
a(n) = a(-n-1) = (n*(n + 1))^2*(30*n^10 + 150*n^9 + 125*n^8 - 400*n^7 - 326*n^6 + 1052*n^5 + 367*n^4 - 1786*n^3 + 202*n^2 + 1382*n - 691)/420.
G.f.: see comment of Vladeta Jovovic in A000538.
a(n) = -Sum_{j=1..13} j*Stirling1(n+1,n+1-j)*Stirling2(n+13-j,n). - Mircea Merca, Jan 25 2014

A255182 Third differences of eighth powers (A001016).

Original entry on oeis.org

1, 253, 5796, 46620, 213444, 697788, 1832292, 4131036, 8329860, 15426684, 26721828, 43858332, 68862276, 104183100, 152733924, 217931868, 303738372, 414699516, 555986340, 733435164, 953587908, 1223732412, 1551942756, 1947119580, 2419030404, 2978349948
Offset: 0

Views

Author

Luciano Ancora, Mar 18 2015

Keywords

Examples

			Third differences:   1, 253, 5796, 46620, 213444, ...  (this sequence)
Second differences:  1, 254, 6050, 52670, 266114, ...  (A255178)
First differences:   1, 255, 6305, 58975, 325089, ...  (A022524)
---------------------------------------------------------------------
The seventh powers:  1, 253, 5796, 46620, 213444, ...  (A001016)
---------------------------------------------------------------------
		

Crossrefs

Programs

  • Magma
    [1,253] cat [84*(2*n-1)*(2*n^4-4*n^3+8*n^2-6*n+3): n in [2..30]]; // Vincenzo Librandi, Mar 18 2015
  • Mathematica
    Join[{1, 253}, Table[84 (2 n - 1) (2 n^4 - 4 n^3 + 8 n^2 - 6 n + 3), {n, 2, 30}]]

Formula

G.f.: (1 + 247*x + 4293*x^2 + 15619*x^3 + 15619*x^4 + 4293*x^5 + 247*x^6 + x^7)/(1 - x)^6.
a(n) = 84*(2*n - 1)*(2*n^4 - 4*n^3 + 8*n^2 - 6*n + 3) for n>1, a(0)=1, a(1)=253.

Extensions

Edited by Bruno Berselli, Mar 19 2015

A081175 Numbers of the form Sum_{i=1..k} i^j, j >= 1, k >= 1.

Original entry on oeis.org

1, 3, 5, 6, 9, 10, 14, 15, 17, 21, 28, 30, 33, 36, 45, 55, 65, 66, 78, 91, 98, 100, 105, 120, 129, 136, 140, 153, 171, 190, 204, 210, 225, 231, 253, 257, 276, 285, 300, 325, 351, 354, 378, 385, 406, 435, 441, 465, 496, 506, 513, 528, 561, 595, 630, 650, 666, 703
Offset: 1

Views

Author

N. J. A. Sloane, Apr 18 2003

Keywords

Comments

Union of sums of k-th powers, for k >= 1.

Examples

			30 is in the set because 30 = 1^2 + 2^2 + 3^2 + 4^2 (j=2, k=4).
		

Crossrefs

For primes in this sequence see A164307.

Programs

  • Maple
    N:= 1000: # to get all terms <= N
    A:=select(`<=`,{1, seq(seq(sum(i^k,i=1..m), m=2..floor((N*(k+1))^(1/(k+1)))),k = 1 ..ilog2(N-1))},N):
    sort(convert(A,list)); # Robert Israel, Jan 26 2015
  • Mathematica
    Take[ Union[ Flatten[ Table[ Sum[ i^j, {i, 1, n}], {j, 1, 9}, {n, 1, 40}]]], 60]

Extensions

Corrected and extended by Robert G. Wilson v, May 08 2003

A261032 a(n) = (-1)^n*(n^8 + 4*n^7 - 14*n^5 + 28*n^3 - 17*n)/2.

Original entry on oeis.org

0, -1, 255, -6306, 59230, -331395, 1348221, -4416580, 12360636, -30686085, 69313915, -145044966, 284936730, -530793991, 944995065, -1617895560, 2677071736, -4298685705, 6721274871, -10262288170, 15337711830, -22485147531, 32390726005, -45920259276, 64155054900, -88432835725
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 18 2015

Keywords

Comments

Alternating sum of eighth powers (A001016).
For n>0, a(n) is divisible by A000217(n).

Examples

			a(0) = 0^8 = 0,
a(1) = 0^8 -1^8 = -1,
a(2) = 0^8 -1^8 + 2^8 = 255,
a(3) = 0^8 -1^8 + 2^8 - 3^8 = -6306,
a(4) = 0^8 -1^8 + 2^8 - 3^8 + 4^8 = 59230,
a(5) = 0^8 -1^8 + 2^8 - 3^8 + 4^8 - 5^8 = -331395, etc.
		

Crossrefs

Programs

  • Magma
    [(-1)^n*(n^8+4*n^7-14*n^5+28*n^3-17*n)/2: n in [0..30]]; // Vincenzo Librandi, Nov 20 2015
    
  • Maple
    seq((-1)^n*(n^8 + 4*n^7 - 14*n^5 + 28*n^3 - 17*n)/2, n = 0 .. 100); # Robert Israel, Nov 18 2015
  • Mathematica
    Table[(1/2) (-1)^n n (n + 1) (n^6 + 3 n^5 - 3 n^4 - 11 n^3 + 11 n^2 + 17 n - 17), {n, 0, 25}]
  • PARI
    vector(100, n, n--; (-1)^n*(n^8+4*n^7-14*n^5+28*n^3-17*n)/2) \\ Altug Alkan, Nov 18 2015
    
  • Sage
    [(-1)^n*(n^8 +4*n^7 -14*n^5 +28*n^3 -17*n)/2 for n in (0..40)] # G. C. Greubel, Apr 02 2021

Formula

G.f.: -x*(1 - 246*x + 4047*x^2 - 11572*x^3 + 4047*x^4 - 246*x^5 + x^6)/(1 + x)^9.
a(n) = Sum_{k = 0..n} (-1)^k*k^8.
a(n) = (-1)^n*n*(n + 1)*(n^6 + 3*n^5 - 3*n^4 - 11*n^3 + 11*n^2 + 17*n - 17)/2.
Sum_{n>0} 1/a(n) = -0.9962225712723456482...
Sum_{j=0..9} binomial(9,j)*a(n-j) = 0. - Robert Israel, Nov 18 2015
E.g.f.: (x/2)*(-2 +253*x -1848*x^2 +2961*x^3 -1596*x^4 +350*x^5 -32*x^6 +x^7)*exp(-x). - G. C. Greubel, Apr 02 2021
Previous Showing 11-16 of 16 results.