cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 27 results. Next

A349365 G.f. A(x) satisfies A(x) = 1 / (1 - x - x * A(x^2)).

Original entry on oeis.org

1, 2, 4, 10, 24, 60, 148, 370, 920, 2296, 5720, 14268, 35568, 88700, 221156, 551482, 1375096, 3428888, 8549944, 21319624, 53160896, 132558360, 330537528, 824204780, 2055176304, 5124638944, 12778424976, 31863351980, 79452130896, 198116051644, 494007751668
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 15 2021

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 30; A[] = 0; Do[A[x] = 1/(1 - x - x A[x^2]) + O[x]^(nmax + 1) // Normal,nmax + 1]; CoefficientList[A[x], x]
    a[0] = 1; a[1] = 2; a[n_] := a[n] = a[n - 2] + Sum[a[Floor[k/2]] a[n - k - 1], {k, 0, n - 1}]; Table[a[n], {n, 0, 30}]
  • PARI
    a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=v[i]+sum(j=0, (i-1)\2, v[j+1]*v[i-2*j])); v; \\ Seiichi Manyama, Nov 26 2023

Formula

G.f.: 1 / (1 - x - x / (1 - x^2 - x^2 / (1 - x^4 - x^4 / (1 - x^8 - x^8 / (1 - ...))))).
a(0) = 1, a(1) = 2; a(n) = a(n-2) + Sum_{k=0..n-1} a(floor(k/2)) * a(n-k-1).
a(n) ~ c * d^n, where d = 2.4935271724548067876965033643037290636931200352851874903211458249308... and c = 0.6156170089558875346518987360369130661426312977478830077668203229773... - Vaclav Kotesovec, Nov 16 2021
a(0) = 1; a(n) = a(n-1) + Sum_{k=0..floor((n-1)/2)} a(k) * a(n-1-2*k). - Seiichi Manyama, Nov 26 2023

A206743 G.f.: 1/(1 - x/(1 - x^2/(1 - x^5/(1 - x^12/(1 - x^29/(1 - x^70/(1 -...- x^Pell(n)/(1 -...)))))))), a continued fraction.

Original entry on oeis.org

1, 1, 1, 2, 3, 5, 8, 13, 22, 36, 60, 99, 164, 272, 450, 746, 1235, 2046, 3389, 5613, 9299, 15402, 25514, 42262, 70005, 115962, 192084, 318182, 527053, 873043, 1446161, 2395504, 3968060, 6572925, 10887788, 18035177, 29874537, 49485965, 81971484, 135782448
Offset: 0

Views

Author

Paul D. Hanna, Feb 12 2012

Keywords

Comments

From Clark Kimberling, Jun 12 2016: (Start)
Number of real integers in n-th generation of tree T(2i) defined as follows.
Let T* be the infinite tree with root 0 generated by these rules: if p is in T*, then p+1 is in T* and x*p is in T*. Let g(n) be the set of nodes in the n-th generation, so that g(0) = {0}, g(1) = {1}, g(2) = {2,x}, g(3) = {3,2x,x+1,x^2}, etc. Let T(r) be the tree obtained by substituting r for x.
For r = 2i, then g(3) = {3,2r,r+1, r^2}, in which the number of real integers is a(3) = 2.
See A274142 for a guide to related sequences. (End)

Examples

			G.f.: A(x) = 1 + x + x^2 + 2*x^3 + 3*x^4 + 5*x^5 + 8*x^6 + 13*x^7 +...
		

Crossrefs

Programs

  • Maple
    A206743 := proc(r)
    local gs,n,gs2,el,a ;
    gs := [2,r] ;
    for n from 3 do
    gs2 := [] ;
    for el in gs do
    gs2 := [op(gs2),el+1,r*el] ;
    end do:
    gs := gs2 ;
    a := 0 ;
    for el in gs do
    if type(el,'realcons') then
    a := a+1 :
    end if;
    end do:
    print(n,a) ;
    end do:
    end proc: # R. J. Mathar, Jun 16 2016
  • Mathematica
    z = 18; t = Join[{{0}}, Expand[NestList[DeleteDuplicates[Flatten[Map[{# + 1, x*#} &, #], 1]] &, {1}, z]]]; u = Table[t[[k]] /. x -> 2 I, {k, 1, z}]; Table[Count[Map[IntegerQ, u[[k]]], True], {k, 1, z}] (* Clark Kimberling, Jun 12 2016 *)
  • PARI
    {Pell(n)=polcoeff(x/(1-2*x-x^2+x*O(x^n)),n)}
    {a(n)=local(CF=1+x*O(x^n),M=ceil(log(2*n+1)/log(2.4))); for(k=0, M, CF=1/(1-x^Pell(M-k+1)*CF)); polcoeff(CF, n, x)}
    for(n=0,55,print1(a(n),", "))
    
  • Python
    N = 1000
    pell = [0,1]
    c = 2
    while c < N:
        pell.append(c)
        c = pell[-1]*2 + pell[-2]
    pell.reverse()
    gf = [0]*(N+1)
    for p in pell:
        gf = [-x for x in gf]
        gf[0] += 1
        quotient = [0]*(N+1)
        remainder = [0]*(N+1)
        remainder[p] = 1
        for n in range(N+1):
            q = remainder[n]//gf[0]
            for i in range(n,N+1):
                remainder[i] -= q*gf[i-n]
            quotient[n] = q
        gf = quotient
    for i in range(N+1):
        print(i,gf[i])
    # Kenny Lau, Aug 01 2017

Formula

a(n) ~ c * d^n, where d = 1.6564594309887754808836889708489581749625897572527517021957723319642053908... and c = 0.3844078703275069072126260832303344589497793302955451672191630264983... - Vaclav Kotesovec, Aug 25 2017

A351972 a(n) = 1 + Sum_{k=0..floor((n-1)/2)} a(k) * a(n-2*k-1).

Original entry on oeis.org

1, 2, 3, 6, 11, 21, 40, 78, 151, 294, 572, 1115, 2172, 4234, 8252, 16088, 31361, 61140, 119191, 232370, 453010, 883167, 1721768, 3356675, 6543988, 12757830, 24871992, 48489172, 94531974, 184294706, 359291464, 700456240, 1365573493, 2662252082, 5190190005
Offset: 0

Views

Author

Ilya Gutkovskiy, Feb 26 2022

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := a[n] = 1 + Sum[a[k] a[n - 2 k - 1], {k, 0, Floor[(n - 1)/2]}]; Table[a[n], {n, 0, 34}]
    nmax = 34; A[] = 0; Do[A[x] = 1/((1 - x) (1 - x A[x^2])) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]

Formula

G.f. A(x) satisfies: A(x) = 1 / ((1 - x) * (1 - x * A(x^2))).

A351973 a(n) = (-1)^n + Sum_{k=0..floor((n-1)/2)} a(k) * a(n-2*k-1).

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 2, 2, 3, 4, 6, 9, 12, 18, 24, 36, 49, 72, 99, 144, 200, 289, 404, 581, 816, 1168, 1646, 2350, 3320, 4730, 6692, 9522, 13487, 19174, 27177, 38614, 54757, 77771, 110318, 156646, 222246, 315526, 447719, 635569, 901924, 1280257, 1816886, 2578911
Offset: 0

Views

Author

Ilya Gutkovskiy, Feb 26 2022

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := a[n] = (-1)^n + Sum[a[k] a[n - 2 k - 1], {k, 0, Floor[(n - 1)/2]}]; Table[a[n], {n, 0, 47}]
    nmax = 47; A[] = 0; Do[A[x] = 1/((1 + x) (1 - x A[x^2])) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]

Formula

G.f. A(x) satisfies: A(x) = 1 / ((1 + x) * (1 - x * A(x^2))).

A253190 Triangle T(n, m)=Sum_{k=1..(n-m)/2} C(m+k-1, k)*T((n-m)/2, k), T(n,n)=1.

Original entry on oeis.org

1, 0, 1, 1, 0, 1, 0, 2, 0, 1, 1, 0, 3, 0, 1, 0, 3, 0, 4, 0, 1, 2, 0, 6, 0, 5, 0, 1, 0, 6, 0, 10, 0, 6, 0, 1, 3, 0, 13, 0, 15, 0, 7, 0, 1, 0, 11, 0, 24, 0, 21, 0, 8, 0, 1, 5, 0, 27, 0, 40, 0, 28, 0, 9, 0, 1, 0, 20, 0, 55, 0, 62, 0, 36, 0, 10, 0, 1
Offset: 1

Views

Author

Vladimir Kruchinin, Mar 24 2015

Keywords

Examples

			1;
0, 1;
1, 0, 1;
0, 2, 0, 1;
1, 0, 3, 0, 1;
0, 3, 0, 4, 0, 1;
2, 0, 6, 0, 5, 0, 1;
		

Crossrefs

Cf. A000621 (row sums), A003600, A253184, A253189.

Programs

  • Maple
    A253190 := proc(n,m)
        option remember;
        if n = m then
            1;
        elif type(n-m,'odd') then
            0 ;
        else
            add(binomial(m+k-1,k)*procname((n-m)/2,k),k=1..(n-m)/2) ;
        end if;
    end proc: # R. J. Mathar, Dec 16 2015
  • Maxima
    T(n, m):=if n=m then 1 else sum(binomial(m+k-1, k)*T((n-m)/2, k), k, 1, (n-m)/2);

Formula

G.f.: A(x)^m=Sum_{n>=m} T(n,m)x^n, A(x)=Sum_{n>0} a(n)*x^(2*n-1), a(n) - is A000621.

A367637 G.f. A(x) satisfies A(x) = 1 / (1 - x * A(x^6)).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 7, 9, 12, 16, 21, 27, 34, 43, 55, 71, 92, 119, 153, 196, 251, 322, 414, 533, 686, 882, 1133, 1455, 1869, 2402, 3088, 3970, 5103, 6558, 8427, 10829, 13917, 17888, 22992, 29551, 37979, 48809, 62727, 80617, 103612, 133167
Offset: 0

Views

Author

Seiichi Manyama, Dec 01 2023

Keywords

Comments

This sequence is different from A005708.

Crossrefs

Programs

  • PARI
    a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=sum(j=0, (i-1)\6, v[j+1]*v[i-6*j])); v;

Formula

a(0) = 1; a(n) = Sum_{k=0..floor((n-1)/6)} a(k) * a(n-1-6*k).

A367794 G.f. A(x) satisfies A(x) = 1 / (1 - x * A(x^4)).

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 3, 4, 5, 7, 10, 14, 19, 26, 36, 50, 69, 95, 131, 181, 250, 346, 478, 660, 911, 1259, 1740, 2404, 3320, 4586, 6336, 8754, 12093, 16705, 23077, 31881, 44043, 60844, 84053, 116116, 160410, 221602, 306136, 422916, 584242, 807110, 1114996
Offset: 0

Views

Author

Seiichi Manyama, Nov 30 2023

Keywords

Crossrefs

Programs

  • PARI
    a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=sum(j=0, (i-1)\4, v[j+1]*v[i-4*j])); v;
    
  • Python
    from functools import lru_cache
    @lru_cache(maxsize=None)
    def A367794(n): return sum(A367794(k)*A367794(n-1-(k<<2)) for k in range(n+3>>2)) if n else 1 # Chai Wah Wu, Nov 30 2023

Formula

a(0) = 1; a(n) = Sum_{k=0..floor((n-1)/4)} a(k) * a(n-1-4*k).

A367800 G.f. A(x) satisfies A(x) = 1 / (1 - x * A(x^8)).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 14, 18, 23, 29, 36, 44, 53, 64, 78, 96, 119, 148, 184, 228, 281, 345, 423, 519, 638, 786, 970, 1198, 1479, 1824, 2247, 2766, 3404, 4190, 5160, 6358, 7837, 9661, 11908, 14674, 18078, 22268, 27428, 33786, 41623
Offset: 0

Views

Author

Seiichi Manyama, Dec 01 2023

Keywords

Comments

a(n) = A005710(n-1) up to n=72, but then the two sequences start to differ. - R. J. Mathar, Dec 04 2023

Crossrefs

Programs

  • PARI
    a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=sum(j=0, (i-1)\8, v[j+1]*v[i-8*j])); v;

Formula

a(0) = 1; a(n) = Sum_{k=0..floor((n-1)/8)} a(k) * a(n-1-8*k).

A036675 G.f. satisfies A(x) = 1 + x*A(x)^2*A(x^2).

Original entry on oeis.org

1, 1, 2, 6, 18, 59, 198, 690, 2450, 8878, 32632, 121518, 457262, 1736526, 6646340, 25613086, 99298674, 387021728, 1515594560, 5960406102, 23530528512, 93216984177, 370450977206, 1476458287082, 5900150928510, 23635544130948
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Maple
    A := 1; f := proc(n) global A; coeff(series( 1+x*(A*subs(x=x^2,A)), x, n+1), x,n); end; for n from 1 to 50 do A := series(A+f(n)*x^n,x,n +1); od: A;
  • Mathematica
    terms = 26; A[] = 0; Do[A[x] = 1 + x*A[x]^2*A[x^2] + O[x]^terms // Normal, terms]; CoefficientList[A[x], x] (* Jean-François Alcover, Jan 15 2018 *)
  • Maxima
    T(n,m):=if m=n then 1 else sum((m*binomial(m+2*i-1,i))/(m+i)*((1+(-1)^(n-m))/2)*T((n-m)/2,i),i,1,n-m);
    makelist(T(2*n+1,1),n,0,30); /* Vladimir Kruchinin, Mar 18 2015 */
  • PARI
    a(n)=local(A,m); if(n<0,0,m=2; A=1+O(x); while(m<=n+1,m*=2; A=2/(1+sqrt(1-4*x*subst(A,x,x^2)))); polcoeff(A,n))
    

Formula

G.f.: 1/(1-z/(1-z/(1-z/(...)))) where z=x/(1-x^2/(1-x^2)) (continued fraction); more generally g.f. C(x/(1-x^2/(1-x^2))) where C(x) is the g.f. for the Catalan numbers (A000108). [Joerg Arndt, Mar 18 2011]
a(n) ~ c * d^n / n^(3/2), where d = 4.250770453055989899189676464071962617426..., c = 0.600960911911396921862654605015399962... . - Vaclav Kotesovec, Aug 10 2014
a(n) = T(2*n+1,1), where T(n,m) = sum(i=1..n-m, (m*binomial(m+2*i-1,i))/(m+i)*((1+(-1)^(n-m))/2)*T((n-m)/2,i)), n>m, T(n,n)=1. - Vladimir Kruchinin, Mar 18 2015

A036676 Used by Polya in calculating A000598.

Original entry on oeis.org

0, 0, 0, 0, 1, 3, 8, 20, 46, 102, 220, 461, 948, 1921, 3836, 7574, 14810, 28705, 55212, 105485, 200300, 378262, 710795, 1329603, 2476817, 4596297, 8499396, 15665681, 28786696, 52747907, 96398485, 175735593, 319623891, 580054269
Offset: 0

Views

Author

Keywords

Formula

G.f.: x * q(x) * (q(x)^3 - 3*q(x)*q(x^2) + 2*q(x^3)) / 6 where q(x) is the g.f. of A000621 with offset 0 [from Polya]. - Sean A. Irvine, Nov 21 2020

Extensions

a(33) corrected by Sean A. Irvine, Nov 21 2020
Previous Showing 11-20 of 27 results. Next