A298668
Number T(n,k) of set partitions of [n] into k blocks such that the absolute difference between least elements of consecutive blocks is always > 1; triangle T(n,k), n>=0, 0<=k<=ceiling(n/2), read by rows.
Original entry on oeis.org
1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 3, 0, 1, 7, 2, 0, 1, 15, 12, 0, 1, 31, 50, 6, 0, 1, 63, 180, 60, 0, 1, 127, 602, 390, 24, 0, 1, 255, 1932, 2100, 360, 0, 1, 511, 6050, 10206, 3360, 120, 0, 1, 1023, 18660, 46620, 25200, 2520, 0, 1, 2047, 57002, 204630, 166824, 31920, 720
Offset: 0
T(5,1) = 1: 12345.
T(5,2) = 7: 1234|5, 1235|4, 123|45, 1245|3, 124|35, 125|34, 12|345.
T(5,3) = 2: 124|3|5, 12|34|5.
T(7,4) = 6: 1246|3|5|7, 124|36|5|7, 124|3|56|7, 126|34|5|7, 12|346|5|7, 12|34|56|7.
T(9,5) = 24: 12468|3|5|7|9, 1246|38|5|7|9, 1246|3|58|7|9, 1246|3|5|78|9, 1248|36|5|7|9, 124|368|5|7|9, 124|36|58|7|9, 124|36|5|78|9, 1248|3|56|7|9, 124|38|56|7|9, 124|3|568|7|9, 124|3|56|78|9, 1268|34|5|7|9, 126|348|5|7|9, 126|34|58|7|9, 126|34|5|78|9, 128|346|5|7|9, 12|3468|5|7|9, 12|346|58|7|9, 12|346|5|78|9, 128|34|56|7|9, 12|348|56|7|9, 12|34|568|7|9, 12|34|56|78|9.
Triangle T(n,k) begins:
1;
0, 1;
0, 1;
0, 1, 1;
0, 1, 3;
0, 1, 7, 2;
0, 1, 15, 12;
0, 1, 31, 50, 6;
0, 1, 63, 180, 60;
0, 1, 127, 602, 390, 24;
0, 1, 255, 1932, 2100, 360;
0, 1, 511, 6050, 10206, 3360, 120;
0, 1, 1023, 18660, 46620, 25200, 2520;
...
Columns k=0-11 give (offsets may differ):
A000007,
A057427,
A168604,
A028243,
A028244,
A028245,
A032180,
A228909,
A228910,
A228911,
A228912,
A228913.
Row sums give
A229046(n-1) for n>0.
-
b:= proc(n, m, t) option remember; `if`(n=0, x^m, add(
b(n-1, max(m, j), `if`(j>m, 1, 0)), j=1..m+1-t))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n, 0$2)):
seq(T(n), n=0..14);
# second Maple program:
T:= (n, k)-> `if`(k=0, `if`(n=0, 1, 0), (k-1)!*Stirling2(n-k+1, k)):
seq(seq(T(n, k), k=0..ceil(n/2)), n=0..14);
# third Maple program:
T:= proc(n, k) option remember; `if`(k<2, `if`(n=0 xor k=0, 0, 1),
`if`(k>ceil(n/2), 0, add((k-j)*T(n-1-j, k-j), j=0..1)))
end:
seq(seq(T(n, k), k=0..ceil(n/2)), n=0..14);
-
T[n_, k_] := T[n, k] = If[k < 2, If[Xor[n == 0, k == 0], 0, 1],
If[k > Ceiling[n/2], 0, Sum[(k-j) T[n-1-j, k-j], {j, 0, 1}]]];
Table[Table[T[n, k], {k, 0, Ceiling[n/2]}], {n, 0, 14}] // Flatten (* Jean-François Alcover, Mar 08 2021, after third Maple program *)
A299907
Number of decomposable lonesum n X n (0,1) matrices.
Original entry on oeis.org
1, 2, 16, 344, 13528, 833432, 73871416, 8893109864, 1394602938808, 275985896665592, 67227147723919096, 19756312865302785224, 6889612105281125091448, 2811911251972519547757272, 1327454489179890318710048056, 717555570945004782603934710824
Offset: 0
See
A099594 for lonesum (0,1) matrices.
-
a[n_] := Sum[Binomial[j - 1 , k - 1 ]*j!^2*StirlingS2[n + 1, j + 1]^2/k!, {k, 0, n}, {j, k, n}]; Table[a[n], {n, 0, 15}] (* Jean-François Alcover, Feb 24 2018 *)
A300693
a(n) = number of edges in a concertina n-cube.
Original entry on oeis.org
0, 1, 6, 42, 344, 3230, 34452
Offset: 0
A300699
Irregular triangle read by rows: T(n, k) = number of vertices with rank k in concertina n-cube.
Original entry on oeis.org
1, 1, 1, 1, 2, 2, 1, 1, 3, 6, 6, 6, 3, 1, 1, 4, 12, 18, 28, 24, 28, 18, 12, 4, 1, 1, 5, 20, 40, 80, 95, 150, 150, 150, 150, 95, 80, 40, 20, 5, 1, 1, 6, 30, 75, 180, 270, 506, 660, 840, 1080, 1035, 1035, 1080, 840, 660, 506, 270, 180, 75, 30, 6, 1, 1, 7, 42, 126, 350, 630, 1337, 2107, 3192, 4760
Offset: 0
First rows of the triangle:
k 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
n
0 1
1 1 1
2 1 2 2 1
3 1 3 6 6 6 3 1
4 1 4 12 18 28 24 28 18 12 4 1
5 1 5 20 40 80 95 150 150 150 150 95 80 40 20 5 1
6 1 6 30 75 180 270 506 660 840 1080 1035 ...
The ranks of vertices of a concertina cube (n=3) can be seen in the linked Hasse diagrams. T(3, 4) = 6, so there are 6 vertices with rank 4.
Ey Ez Ax P(x, y, z) implies Ey Ax Ez P(x, y, z), and their ranks are 3 and 4. As the difference in rank is 1, this implication is an edge in the Hasse diagram.
A300700
Triangle read by rows: T(n, n-k) = number of k-faces of the concertina n-cube.
Original entry on oeis.org
1, 1, 2, 1, 6, 6, 1, 18, 42, 26, 1, 58, 252, 344, 150, 1, 190, 1420, 3380, 3230, 1082, 1, 614, 7770, 29200, 47130, 34452, 9366
Offset: 0
First rows of the triangle:
k 0 1 2 3 4 5 6 sums = A300701
n
0 1 1
1 1 2 3
2 1 6 6 13
3 1 18 42 26 87
4 1 58 252 344 150 805
5 1 190 1420 3380 3230 1082 9303
6 1 614 7770 29200 47130 34452 9366 128533
T(3, 3-1) = T(3, 2) = 42 is the number of 1-faces (edges) of the concertina 3-cube. It has 26 vertices, 42 edges, 18 faces and 1 cell.
In the reflected triangle the column number is the dimension of the counted faces:
n-k 0 1 2 3 4 5 6
n
0 1
1 2 1
2 6 6 1
3 26 42 18 1
4 150 344 252 58 1
5 1082 3230 3380 1420 190 1
6 9366 34452 47130 29200 7770 614 1
A363732
Triangle read by rows. The triangle algorithm applied to (-1)^n/n!.
Original entry on oeis.org
1, -2, 1, 5, -4, 1, -15, 15, -6, 1, 52, -60, 30, -8, 1, -203, 260, -150, 50, -10, 1, 877, -1218, 780, -300, 75, -12, 1, -4140, 6139, -4263, 1820, -525, 105, -14, 1, 21147, -33120, 24556, -11368, 3640, -840, 140, -16, 1, -115975, 190323, -149040, 73668, -25578, 6552, -1260, 180, -18, 1
Offset: 0
The triangle T(n, k) starts:
[0] 1;
[1] -2, 1;
[2] 5, -4, 1;
[3] -15, 15, -6, 1;
[4] 52, -60, 30, -8, 1;
[5] -203, 260, -150, 50, -10, 1;
[6] 877, -1218, 780, -300, 75, -12, 1;
[7] -4140, 6139, -4263, 1820, -525, 105, -14, 1;
[8] 21147, -33120, 24556, -11368, 3640, -840, 140, -16, 1;
- Peter Luschny, Table of n, a(n) for row 0..100.
- Kwang-Wu Chen, Algorithms for Bernoulli numbers and Euler numbers, J. Integer Sequences, 4 (2001), #01.1.6.
- Masanobu Kaneko, The Akiyama-Tanigawa algorithm for Bernoulli numbers, J. Integer Sequences, 3 (2000), #00.2.9.
- Naho Kawasaki and Yasuo Ohno, The triangle algorithm for Bernoulli polynomials, Integers, vol. 23 (2023). (See figure 4.)
- D. Merlini, R. Sprugnoli, and M. C. Verri, The Akiyama-Tanigawa Transformation, Integers, 5 (1) (2005) #A05.
Cf.
A023531,
A007318,
A000079,
A000012,
A154921,
A000670,
A196838/
A196839,
A164555/
A027642,
A153641,
A122045,
A155585,
A011971,
A123346,
A011972,
A056857,
A363524 (Chen sequence).
-
TA := proc(a, n, m, x) option remember; if n = 0 then a(m) else
normal((m + 1)*TA(a, n - 1, m + 1, x) - (m + 1 - x)*TA(a, n - 1, m, x)) fi end:
seq(seq(coeff(TA(n -> (-1)^n/n!, n, 0, x), x, k), k = 0..n), n = 0..10);
-
(* rows[0..n], n[0..oo] *)
(* row[n]= *)
n=9;r={};For[a=n+1,a>0,a--,AppendTo[r,(-1)^(a+1)*Sum[StirlingS2[a,k],{k,0,a}]*Product[(2*(a+j))/(2*j+2),{j,0,n-a}]]];r
(* columns[1..n], n[0..oo] *)
(* column[n]= *)
n=0;c={};For[a=1,a<15,a++,AppendTo[c,(-1)^(a+1)*Sum[StirlingS2[a,k],{k,0,a}]*Product[(2*(a+j-1))/(2*j),{j,1,n}]]];c
(* sequence *)
s={};For[n=0,n<15,n++,For[a=n+1,a>0,a--,AppendTo[s,(-1)^(a+1)*Sum[StirlingS2[a,k],{k,0,a}]*Product[(2*(a+j))/(2*j+2),{j,0,n-a}]]]];s
(* Detlef Meya, Jun 22 2023 *)
-
def a(n): return (-1)^n / factorial(n)
@cached_function
def p(n, m):
R = PolynomialRing(QQ, "x")
if n == 0: return R(a(m))
return R((m + 1)*p(n - 1, m + 1) - (m + 1 - x)*p(n - 1, m))
for n in range(10): print(p(n, 0).list())
A054255
Triangle T(n,k) (n >= 1, 0<=k<=n) giving number of preferential arrangements of n things beginning with k (transposed, then read by rows).
Original entry on oeis.org
1, 1, 2, 2, 5, 6, 6, 18, 25, 26, 24, 84, 134, 149, 150, 120, 480, 870, 1050, 1081, 1082, 720, 3240, 6600, 8700, 9302, 9365, 9366, 5040, 25200, 57120, 82320, 92526, 94458, 94585, 94586, 40320, 221760, 554400, 871920, 1038744, 1085364, 1091414, 1091669, 1091670
Offset: 1
Eugene McDonnell (Eemcd(AT)aol.com), May 05 2000
1;
1, 2;
2, 5, 6;
6, 18, 25, 26;
24, 84, 134, 149, 150;
...
Cf.
A090665 (triangle with rows reversed).
A123114
a(n) = Sum_{r>0,s>0} binomial(r*s-1,n-1)/2^(r+s).
Original entry on oeis.org
1, 3, 13, 83, 701, 7363, 92541, 1354627, 22636861, 425241347, 8871085565, 203487078403, 5090418231549, 137920771272963, 4023549748488445, 125743894742698243, 4191213031967650813, 148414827031140706307
Offset: 1
-
Table[Sum[StirlingS1[n, k]*(Sum[(j - 1)!*StirlingS2[k, j], {j, 1, k}])^2, {k, 1, n}]/(n-1)!, {n, 1, 20}] (* Vaclav Kotesovec, Jun 07 2019 *)
Table[-(-1)^n + Sum[StirlingS1[n, k]*PolyLog[1-k, 2]^2, {k, 2, n}]/(n-1)!, {n, 1, 20}] (* Vaclav Kotesovec, Jun 07 2019 *)
A129064
Fourth column (m=3) of triangle A129062 and third column of triangle A079641.
Original entry on oeis.org
1, 12, 120, 1230, 13650, 166376, 2229444, 32724810, 523531470, 9080409492, 169892449584, 3412891866566, 73300097535210, 1676670468061920, 40704197313912060, 1045464783485987298, 28328001168991093350
Offset: 0
A176785
Sequence with e.g.f. g(x) = -(1/2)*sqrt(2*exp(-2*x)-1) + 1/2.
Original entry on oeis.org
0, 1, 0, 4, 24, 256, 3360, 53824, 1016064, 22095616, 543966720, 14955833344, 454227400704, 15103031627776, 545668238868480, 21286707282264064, 891735287528914944, 39926103010743156736
Offset: 0
a(4) = 24: The 24 plane increasing trees on 4 vertices are
............................................................
.........1(x4 colors).......1(x4 colors).......1(x4 colors).
......../|\................/|\................/|\...........
......./.|.\............../.|.\............../.|.\..........
......2..3..4............2..4..3............3..2..4.........
............................................................
.........1(x4 colors).......1(x4 colors).......1(x4 colors).
......../|\................/|\................/|\...........
......./.|.\............../.|.\............../.|.\..........
......3..4..2............4..2..3............4..3..2.........
............................................................
-
max = 17; g[x_] := -(1/2)*Sqrt[2*Exp[-2*x] - 1] + 1/2; CoefficientList[ Series[ g[x], {x, 0, max}], x]*Range[0, max]! (* Jean-François Alcover, Oct 05 2011 *)
-
x='x+O('x^66); concat ([0], Vec( serlaplace( serreverse( -1/2*log(1-2*x+2*x^2) ) ) ) ) \\ Joerg Arndt, Mar 01 2014
Comments