cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 101-110 of 144 results. Next

A298668 Number T(n,k) of set partitions of [n] into k blocks such that the absolute difference between least elements of consecutive blocks is always > 1; triangle T(n,k), n>=0, 0<=k<=ceiling(n/2), read by rows.

Original entry on oeis.org

1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 3, 0, 1, 7, 2, 0, 1, 15, 12, 0, 1, 31, 50, 6, 0, 1, 63, 180, 60, 0, 1, 127, 602, 390, 24, 0, 1, 255, 1932, 2100, 360, 0, 1, 511, 6050, 10206, 3360, 120, 0, 1, 1023, 18660, 46620, 25200, 2520, 0, 1, 2047, 57002, 204630, 166824, 31920, 720
Offset: 0

Views

Author

Alois P. Heinz, Jan 24 2018

Keywords

Examples

			T(5,1) = 1: 12345.
T(5,2) = 7: 1234|5, 1235|4, 123|45, 1245|3, 124|35, 125|34, 12|345.
T(5,3) = 2: 124|3|5, 12|34|5.
T(7,4) = 6: 1246|3|5|7, 124|36|5|7, 124|3|56|7, 126|34|5|7, 12|346|5|7, 12|34|56|7.
T(9,5) = 24: 12468|3|5|7|9, 1246|38|5|7|9, 1246|3|58|7|9, 1246|3|5|78|9, 1248|36|5|7|9, 124|368|5|7|9, 124|36|58|7|9, 124|36|5|78|9, 1248|3|56|7|9, 124|38|56|7|9, 124|3|568|7|9, 124|3|56|78|9, 1268|34|5|7|9, 126|348|5|7|9, 126|34|58|7|9, 126|34|5|78|9, 128|346|5|7|9, 12|3468|5|7|9, 12|346|58|7|9, 12|346|5|78|9, 128|34|56|7|9, 12|348|56|7|9, 12|34|568|7|9, 12|34|56|78|9.
Triangle T(n,k) begins:
  1;
  0, 1;
  0, 1;
  0, 1,    1;
  0, 1,    3;
  0, 1,    7,     2;
  0, 1,   15,    12;
  0, 1,   31,    50,     6;
  0, 1,   63,   180,    60;
  0, 1,  127,   602,   390,    24;
  0, 1,  255,  1932,  2100,   360;
  0, 1,  511,  6050, 10206,  3360,  120;
  0, 1, 1023, 18660, 46620, 25200, 2520;
  ...
		

Crossrefs

Columns k=0-11 give (offsets may differ): A000007, A057427, A168604, A028243, A028244, A028245, A032180, A228909, A228910, A228911, A228912, A228913.
Row sums give A229046(n-1) for n>0.
T(2n+1,n+1) gives A000142.
T(2n,n) gives A001710(n+1).

Programs

  • Maple
    b:= proc(n, m, t) option remember; `if`(n=0, x^m, add(
          b(n-1, max(m, j), `if`(j>m, 1, 0)), j=1..m+1-t))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n, 0$2)):
    seq(T(n), n=0..14);
    # second Maple program:
    T:= (n, k)-> `if`(k=0, `if`(n=0, 1, 0), (k-1)!*Stirling2(n-k+1, k)):
    seq(seq(T(n, k), k=0..ceil(n/2)), n=0..14);
    # third Maple program:
    T:= proc(n, k) option remember; `if`(k<2, `if`(n=0 xor k=0, 0, 1),
          `if`(k>ceil(n/2), 0, add((k-j)*T(n-1-j, k-j), j=0..1)))
        end:
    seq(seq(T(n, k), k=0..ceil(n/2)), n=0..14);
  • Mathematica
    T[n_, k_] := T[n, k] = If[k < 2, If[Xor[n == 0, k == 0], 0, 1],
         If[k > Ceiling[n/2], 0, Sum[(k-j) T[n-1-j, k-j], {j, 0, 1}]]];
    Table[Table[T[n, k], {k, 0, Ceiling[n/2]}], {n, 0, 14}] // Flatten (* Jean-François Alcover, Mar 08 2021, after third Maple program *)

Formula

T(n,k) = (k-1)! * Stirling2(n-k+1,k) for k>0, T(n,0) = A000007(n).
T(n,k) = Sum_{j=0..k-1} (-1)^j*C(k-1,j)*(k-j)^(n-k) for k>0, T(n,0) = A000007(n).
T(n,k) = (k-1)! * A136011(n,k) for n, k >= 1.
Sum_{j>=0} T(n+j,j) = A076726(n) = 2*A000670(n) = A000629(n) + A000007(n).

A299907 Number of decomposable lonesum n X n (0,1) matrices.

Original entry on oeis.org

1, 2, 16, 344, 13528, 833432, 73871416, 8893109864, 1394602938808, 275985896665592, 67227147723919096, 19756312865302785224, 6889612105281125091448, 2811911251972519547757272, 1327454489179890318710048056, 717555570945004782603934710824
Offset: 0

Views

Author

N. J. A. Sloane, Feb 23 2018

Keywords

Crossrefs

Main diagonal of A299906.
See also A000629, A221961 for symmetric square lonesum matrices.
See A099594 for lonesum (0,1) matrices.

Programs

  • Mathematica
    a[n_] := Sum[Binomial[j - 1 , k - 1 ]*j!^2*StirlingS2[n + 1, j + 1]^2/k!, {k, 0, n}, {j, k, n}]; Table[a[n], {n, 0, 15}] (* Jean-François Alcover, Feb 24 2018 *)

Extensions

More terms from Jean-François Alcover, Feb 24 2018

A300693 a(n) = number of edges in a concertina n-cube.

Original entry on oeis.org

0, 1, 6, 42, 344, 3230, 34452
Offset: 0

Views

Author

Tilman Piesk, Apr 03 2018

Keywords

Comments

n-place formulas in first-order logic like Ax Ey P(x, y) can be ordered by implication. This Hasse diagram has A000629(n) vertices and a(n) edges.
This is the second diagonal on the right in A300700, the triangle of faces in the concertina n-cube.
The corresponding sequence for cocoon concertina n-cubes, which have more internal vertices and edges, is A300694.

Crossrefs

Formula

a(n) = A300700(n, n-1).

A300699 Irregular triangle read by rows: T(n, k) = number of vertices with rank k in concertina n-cube.

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 1, 1, 3, 6, 6, 6, 3, 1, 1, 4, 12, 18, 28, 24, 28, 18, 12, 4, 1, 1, 5, 20, 40, 80, 95, 150, 150, 150, 150, 95, 80, 40, 20, 5, 1, 1, 6, 30, 75, 180, 270, 506, 660, 840, 1080, 1035, 1035, 1080, 840, 660, 506, 270, 180, 75, 30, 6, 1, 1, 7, 42, 126, 350, 630, 1337, 2107, 3192, 4760
Offset: 0

Views

Author

Tilman Piesk, Mar 11 2018

Keywords

Comments

n-place formulas in first-order logic like Ax Ey P(x, y) ordered by implication form a graded poset, and its Hasse diagram is the concertina n-cube.
Sum of row n is A000629(n), the number of vertices of a concertina n-cube.
The rows are palindromic. Their lengths are the central polygonal numbers A000124 = 1, 2, 4, 7, 11, 16, 22, ... That means after row 0 rows of even and odd length follow each other in pairs.
The central values are 1, (1), (2), 6, 24, (150), (1035), 9030, 88760, (1002204), ... (Values next to the center in rows of even length are in parentheses.)
Maximal values are 1, 1, 2, 6, 28, 150, 1080, 9030, 88760, 1002204, ...
A300695 is a triangle of the same shape that shows the number of ranks in cocoon concertina hypercubes.

Examples

			First rows of the triangle:
    k   0   1   2   3   4   5    6    7    8    9   10  11  12  13  14  15
  n
  0     1
  1     1   1
  2     1   2   2   1
  3     1   3   6   6   6   3    1
  4     1   4  12  18  28  24   28   18   12    4    1
  5     1   5  20  40  80  95  150  150  150  150   95  80  40  20   5   1
  6     1   6  30  75 180 270  506  660  840 1080 1035 ...
The ranks of vertices of a concertina cube (n=3) can be seen in the linked Hasse diagrams. T(3, 4) = 6, so there are 6 vertices with rank 4.
Ey Ez Ax P(x, y, z) implies Ey Ax Ez P(x, y, z), and their ranks are 3 and 4. As the difference in rank is 1, this implication is an edge in the Hasse diagram.
		

Crossrefs

A300700 Triangle read by rows: T(n, n-k) = number of k-faces of the concertina n-cube.

Original entry on oeis.org

1, 1, 2, 1, 6, 6, 1, 18, 42, 26, 1, 58, 252, 344, 150, 1, 190, 1420, 3380, 3230, 1082, 1, 614, 7770, 29200, 47130, 34452, 9366
Offset: 0

Views

Author

Tilman Piesk, Mar 11 2018

Keywords

Comments

n-place formulas in first-order logic like Ax Ey P(x, y) can be ordered by implication. This Hasse diagram can be interpreted as an n-dimensional convex polytope with face dimensions ranging from 0 (the vertices) to n (the polytope itself).
The right diagonal (n-k = 0, number of vertices) is A000629, which is twice an ordered Bell number (A000670) for n>0.
The second right diagonal (n-k = 1, number of edges) is A300693.
The second left diagonal (k = 1, number of facets) is 2, 6, 18, 58, 190, 614, ... (not to be confused with A151282 or A193777).
The third left diagonal (k = 2, number of ridges) is 6, 42, 252, 1420, 7770, ...
The row sums are A300701. The central diagonal starts 1, 6, 252, 29200 and the row maxima start 1, 2, 6, 42, 344, 3380, 47130.
The corresponding triangle for hypercubes is A013609, and its row sums are A000244 (powers of 3). That for permutohedra is A019538, and its row sums are A000670 (ordered Bell numbers).

Examples

			First rows of the triangle:
  k      0     1     2     3     4     5     6         sums = A300701
n
0        1                                                1
1        1     2                                          3
2        1     6     6                                   13
3        1    18    42    26                             87
4        1    58   252   344   150                      805
5        1   190  1420  3380  3230  1082               9303
6        1   614  7770 29200 47130 34452  9366       128533
T(3, 3-1) = T(3, 2) = 42 is the number of 1-faces (edges) of the concertina 3-cube. It has 26 vertices, 42 edges, 18 faces and 1 cell.
In the reflected triangle the column number is the dimension of the counted faces:
  n-k    0     1     2     3     4     5     6
n
0        1
1        2     1
2        6     6     1
3       26    42    18     1
4      150   344   252    58     1
5     1082  3230  3380  1420   190     1
6     9366 34452 47130 29200  7770   614     1
		

Crossrefs

Cf. A013609, A000244 (for hypercubes).
Cf. A019538, A000670 (for permutohedra).

A363732 Triangle read by rows. The triangle algorithm applied to (-1)^n/n!.

Original entry on oeis.org

1, -2, 1, 5, -4, 1, -15, 15, -6, 1, 52, -60, 30, -8, 1, -203, 260, -150, 50, -10, 1, 877, -1218, 780, -300, 75, -12, 1, -4140, 6139, -4263, 1820, -525, 105, -14, 1, 21147, -33120, 24556, -11368, 3640, -840, 140, -16, 1, -115975, 190323, -149040, 73668, -25578, 6552, -1260, 180, -18, 1
Offset: 0

Views

Author

Peter Luschny, Jun 18 2023

Keywords

Comments

The triangle algorithm, as understood here, is a transformation that maps a sequence of integers (a(n) : n >= 0) to a polynomial sequence. A polynomial sequence is a sequence of polynomials (P(n,x) : n >= 0) with degree(P(n, x)) = n for all n >= 0.
The polynomials P(n, x) are recursively defined by P(n, x) = p(n, 0, x), where the initial sequence is p(0, m, x) = a(m), and for n > 0 is given by
p(n, m, x) = (m + 1)*p(n - 1, m + 1, x) - (m + 1 - x)*p(n - 1, m, x).
Here we identify the polynomial sequence with the infinite lower triangular array of its coefficients, T(n, k) = [x^k] P(n, x). We call the mapping (a(n) : n >= 0) -> (T(n, k) : 0 <= k <= n) the 'triangle algorithm', following the lead of Kawasaki and Ohno.
Evaluating P(n, x) at different values of x gives rise to a multitude of other sequences; in particular, the transformation a(n) -> b(n) = P(n, 1) will be called the Akiyama-Tanigawa transform of a.
The triangle algorithm was studied by Akiyama and Tanigawa, Chen, Imatomi, Arakawa and Kaneko, Kawasaki and Ohno, and others, at first in connection with the Bernoulli and Poly-Bernoulli numbers.
.
The paradigmatic examples are:
a(n) = 1 -> x^n, the standard base of polynomials, A023531.
a(n) = n + 1 -> binomial(n, k), Pascal triangle, A007318.
a(n) = n + 1 -> P(n, 1) powers of 2, A000079.
a(n) = n + 1 -> P(n, 0) the all 1's sequence A000012.
a(n) = 2^n -> [x^k] P(n, x), A154921.
a(n) = 2^n -> P(n, 0) Fubini numbers, A000670.
a(n) = 2^n -> P(n, 1) ordered set partitions of subsets of [n], A000629.
a(n) = 2^n -> P(n,-1) osp. of [n] with even number of blocks, A052841.
a(n) = 1 / (n + 1) -> [x^k] B(n, x), Bernoulli polynomials, A196838/A196839.
a(n) = 1 / (n + 1) -> B(n, 1), the Bernoulli numbers, A164555/A027642.
a(n) = Chen(n) -> skp(n, x), Swiss-Knife polynomials, A153641.
a(n) = Chen(n) -> P(n, 0), 2^n*Euler(n, 1/2) = Euler(n), A122045.
a(n) = Chen(n) -> P(n, 1), 2^n*Euler(n, 1), A155585.
a(n) = (-1)^n/n! -> [x^k] P(n, x) this "Bell" triangle.
a(n) = (-1)^n/n! -> (-1)^n*P(n, 1) = Bell(n), A000110.
a(n) = (-1)^n/n! -> (-1)^n*P(n,-1) = 2-Bell(n), A005493.
a(n) = 1/n! -> (-1)^n*P(n, 1) = complementary Bell(n), A000587.
a(n) = 1/n! -> (-1)^n*P(n,-1) = complementary 2-Bell(n), A074051.
(For Chen's sequence see A363524.)
.
The present sequence deals with the case of the Bell numbers. In contrast to Aitken's array A011971 and its variants A123346 and A011972, the Bell numbers do not appear as a column of the triangle but as row sums (times (-1)^n), i.e., as values of the associated polynomials at x = 1. Comparing this with a similar situation with the Bernoulli numbers/polynomials, our triangle could be viewed as a more organic generalization of the Bell numbers. Indeed, the names 'Bell triangle' and 'Bell polynomials' would be justified here; but these are already assigned to other concepts.

Examples

			The triangle T(n, k) starts:
  [0]     1;
  [1]    -2,      1;
  [2]     5,     -4,     1;
  [3]   -15,     15,    -6,      1;
  [4]    52,    -60,    30,     -8,    1;
  [5]  -203,    260,  -150,     50,  -10,    1;
  [6]   877,  -1218,   780,   -300,   75,  -12,   1;
  [7] -4140,   6139, -4263,   1820, -525,  105, -14,   1;
  [8] 21147, -33120, 24556, -11368, 3640, -840, 140, -16, 1;
		

Crossrefs

Cf. A293037 (row sums), A000110 (row sums, unsigned), A005493 (alternating row sums, signed).

Programs

  • Maple
    TA := proc(a, n, m, x) option remember; if n = 0 then a(m) else
    normal((m + 1)*TA(a, n - 1, m + 1, x) - (m + 1 - x)*TA(a, n - 1, m, x)) fi end:
    seq(seq(coeff(TA(n -> (-1)^n/n!, n, 0, x), x, k), k = 0..n), n = 0..10);
  • Mathematica
    (* rows[0..n], n[0..oo] *)
    (* row[n]= *)
    n=9;r={};For[a=n+1,a>0,a--,AppendTo[r,(-1)^(a+1)*Sum[StirlingS2[a,k],{k,0,a}]*Product[(2*(a+j))/(2*j+2),{j,0,n-a}]]];r
    (* columns[1..n], n[0..oo] *)
    (* column[n]= *)
    n=0;c={};For[a=1,a<15,a++,AppendTo[c,(-1)^(a+1)*Sum[StirlingS2[a,k],{k,0,a}]*Product[(2*(a+j-1))/(2*j),{j,1,n}]]];c
    (* sequence *)
    s={};For[n=0,n<15,n++,For[a=n+1,a>0,a--,AppendTo[s,(-1)^(a+1)*Sum[StirlingS2[a,k],{k,0,a}]*Product[(2*(a+j))/(2*j+2),{j,0,n-a}]]]];s
    (* Detlef Meya, Jun 22 2023 *)
  • SageMath
    def a(n): return (-1)^n / factorial(n)
    @cached_function
    def p(n, m):
        R = PolynomialRing(QQ, "x")
        if n == 0: return R(a(m))
        return R((m + 1)*p(n - 1, m + 1) - (m + 1 - x)*p(n - 1, m))
    for n in range(10): print(p(n, 0).list())

A054255 Triangle T(n,k) (n >= 1, 0<=k<=n) giving number of preferential arrangements of n things beginning with k (transposed, then read by rows).

Original entry on oeis.org

1, 1, 2, 2, 5, 6, 6, 18, 25, 26, 24, 84, 134, 149, 150, 120, 480, 870, 1050, 1081, 1082, 720, 3240, 6600, 8700, 9302, 9365, 9366, 5040, 25200, 57120, 82320, 92526, 94458, 94585, 94586, 40320, 221760, 554400, 871920, 1038744, 1085364, 1091414, 1091669, 1091670
Offset: 1

Views

Author

Eugene McDonnell (Eemcd(AT)aol.com), May 05 2000

Keywords

Comments

Can be generated from Stirling_2 triangle A008277 (cf. A028246, which is intermediate between the two arrays).

Examples

			   1;
   1,  2;
   2,  5,   6;
   6, 18,  25,  26;
  24, 84, 134, 149, 150;
  ...
		

Crossrefs

Row sums give A000670. First 3 rows are A000629, A002050 = A000629 - 1, 2*A002051 = (A000629 - 2^m) (m >= 0).
Cf. A090665 (triangle with rows reversed).

Extensions

More terms from James Sellers, May 05 2000

A123114 a(n) = Sum_{r>0,s>0} binomial(r*s-1,n-1)/2^(r+s).

Original entry on oeis.org

1, 3, 13, 83, 701, 7363, 92541, 1354627, 22636861, 425241347, 8871085565, 203487078403, 5090418231549, 137920771272963, 4023549748488445, 125743894742698243, 4191213031967650813, 148414827031140706307
Offset: 1

Views

Author

Vladeta Jovovic, Sep 28 2006

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[StirlingS1[n, k]*(Sum[(j - 1)!*StirlingS2[k, j], {j, 1, k}])^2, {k, 1, n}]/(n-1)!, {n, 1, 20}] (* Vaclav Kotesovec, Jun 07 2019 *)
    Table[-(-1)^n + Sum[StirlingS1[n, k]*PolyLog[1-k, 2]^2, {k, 2, n}]/(n-1)!, {n, 1, 20}] (* Vaclav Kotesovec, Jun 07 2019 *)

Formula

a(n) = (1/(n-1)!)*Sum_{k=1..n} Stirling1(n,k)*b(k)^2, where b(n) = Sum_{k=1..n} (k-1)!*Stirling2(n,k).
a(n) ~ c * (n-1)! / (log(2))^(2*n), where c = 2^(-log(2)/2) = 0.7864497045594053649114085152934509198700275589579678941719548714254307448... - Vaclav Kotesovec, Jun 07 2019

A129064 Fourth column (m=3) of triangle A129062 and third column of triangle A079641.

Original entry on oeis.org

1, 12, 120, 1230, 13650, 166376, 2229444, 32724810, 523531470, 9080409492, 169892449584, 3412891866566, 73300097535210, 1676670468061920, 40704197313912060, 1045464783485987298, 28328001168991093350
Offset: 0

Views

Author

Wolfdieter Lang, May 04 2007

Keywords

Crossrefs

A129063, A000629 give m=2, m=1 columns.

Formula

a(n) = A129062(n+3,3), n>=0.
a(n) = A079641(n+2,2), n>=0.
E.g.f.: (d^3/dx^3)*((-log(2-exp(x)))^3)/3!.

A176785 Sequence with e.g.f. g(x) = -(1/2)*sqrt(2*exp(-2*x)-1) + 1/2.

Original entry on oeis.org

0, 1, 0, 4, 24, 256, 3360, 53824, 1016064, 22095616, 543966720, 14955833344, 454227400704, 15103031627776, 545668238868480, 21286707282264064, 891735287528914944, 39926103010743156736
Offset: 0

Views

Author

Karol A. Penson, Apr 26 2010

Keywords

Examples

			a(4) = 24: The 24 plane increasing trees on 4 vertices are
............................................................
.........1(x4 colors).......1(x4 colors).......1(x4 colors).
......../|\................/|\................/|\...........
......./.|.\............../.|.\............../.|.\..........
......2..3..4............2..4..3............3..2..4.........
............................................................
.........1(x4 colors).......1(x4 colors).......1(x4 colors).
......../|\................/|\................/|\...........
......./.|.\............../.|.\............../.|.\..........
......3..4..2............4..2..3............4..3..2.........
............................................................
		

Crossrefs

Programs

  • Mathematica
    max = 17; g[x_] := -(1/2)*Sqrt[2*Exp[-2*x] - 1] + 1/2; CoefficientList[ Series[ g[x], {x, 0, max}], x]*Range[0, max]! (* Jean-François Alcover, Oct 05 2011 *)
  • PARI
    x='x+O('x^66); concat ([0], Vec( serlaplace( serreverse( -1/2*log(1-2*x+2*x^2) ) ) ) ) \\ Joerg Arndt, Mar 01 2014

Formula

The e.g.f. A(x) satisfies the autonomous differential equation
A' = (1-2*A+2*A^2)/(1-2*A) with A(0) = 0. The compositional inverse of the e.g.f. is -1/2*log(1-2*x+2*x^2).
a(n) = (-1)^(n-1)*D^(n-1)(1) evaluated at x = 1, where D denotes the operator g(x) -> d/dx((x+1/x)*g(x)).
Applying [Bergeron et al., Theorem 1] to the result x = int {t = 0..A(x)} 1/phi(t), where phi(t) = (1-2*t+2*t^2)/(1-2*t) = 1+2*t^2+4*t^3+8*t^4+... leads to the following combinatorial interpretation for this sequence: a(n) gives the number of plane increasing trees on n vertices with no vertices of outdegree 1 and where each vertex of outdegree k >= 2 can be colored in 2^(k-1) ways. An example is given below. - Peter Bala, Sep 06 2011
a(n) ~ 2^(n-3/2)*n^(n-1)/(exp(n)*(log(2))^(n-1/2)). - Vaclav Kotesovec, Jun 28 2013
a(n+1) = 1/sqrt(2) * Sum_{k >= 0} (1/8)^k*binomial(2*k,k)*(2*k - 1)^n = 1/sqrt(2)*Sum_{k >= 0} (-1/2)^k*binomial(-1/2,k)*(2*k - 1)^n = Sum_{k = 0..n} Sum_{i = 0..k} (-1)^(k-i)/4^k* binomial(2*k,k)*binomial(k,i)*(2*i - 1)^n. Cf. A124212, A124214 and A229558. - Peter Bala, Aug 30 2016
Previous Showing 101-110 of 144 results. Next