A014608
a(n) = (4n)!/(24^n).
Original entry on oeis.org
1, 1, 70, 34650, 63063000, 305540235000, 3246670537110000, 66475579247327250000, 2390461829733887910000000, 140810154080474667338550000000, 12868639981414579848070084500000000, 1746930746117010628955362040959500000000
Offset: 0
BjornE (mdeans(AT)algonet.se)
- George E. Andrews, Richard Askey and Ranjan Roy, Special Functions, Cambridge University Press, 1998.
-
Table[(4n)!/24^n,{n,0,10}] (* Harvey P. Dale, Oct 15 2015 *)
-
a(n)=(4*n)!/24^n;
A187783
De Bruijn's triangle, T(m,n) = (m*n)!/(n!^m) read by downward antidiagonals.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 6, 6, 1, 1, 1, 20, 90, 24, 1, 1, 1, 70, 1680, 2520, 120, 1, 1, 1, 252, 34650, 369600, 113400, 720, 1, 1, 1, 924, 756756, 63063000, 168168000, 7484400, 5040, 1
Offset: 0
T(3,5) = (3*5)!/(5!^3) = 756756 = A014609(3) = A006480(5) is the number of permutations of a multiset that contains 3 different elements 5 times, e.g., {1,1,1,1,1,2,2,2,2,2,3,3,3,3,3}.
- Tilman Piesk, First 54 rows of the triangle, flattened
- T. Chappell, A. Lascoux, S. Ole Warnaar, and W. Zudilin, Logarithmic and complex constant term identities, arXiv:1112.3130 [math.CO], 2012.
- Tilman Piesk, Array for indices 0..16
- Tilman Piesk, PHP code used to create the b-file
- Tilman Piesk, Illustration of the multisets for m,n=0..4
- Wikipedia, Permutations of multisets, Pascal matrix and simplex
-
[Factorial(k*(n-k))/(Factorial(n-k))^k: k in [0..n], n in [0..10]]; // G. C. Greubel, Dec 26 2022
-
T[n_, k_]:= (k*n)!/(n!)^k; Table[T[n, k-n], {k, 9}, {n, 0, k-1}]//Flatten
-
def A187783(n,k): return gamma(k*(n-k)+1)/(factorial(n-k))^k
flatten([[A187783(n,k) for k in range(n+1)] for n in range(11)]) # G. C. Greubel, Dec 26 2022
A084939
Pentagorials: n-th polygorial for k=5.
Original entry on oeis.org
1, 1, 5, 60, 1320, 46200, 2356200, 164934000, 15173928000, 1775349576000, 257425688520000, 45306921179520000, 9514453447699200000, 2350070001581702400000, 674470090453948588800000, 222575129849803034304000000
Offset: 0
Daniel Dockery (peritus(AT)gmail.com), Jun 13 2003
- Robert Israel, Table of n, a(n) for n = 0..243
- M. A. Asiru, Sequence factorial of g-gonal numbers, Int. J. Math. Educ. Sci. Technol., 44(4) (2012), 579-586.
- Daniel Dockery, Polygorials, Special "Factorials" of Polygonal Numbers, preprint, 2003.
-
a := n->(n!/2^n)*mul(3*i+2,i=0..n-1); [seq(a(j),j=0..30)];
-
Table[k! Pochhammer[2/3, k] (3/2)^k, {k, 0, 20}] (* Jan Mangaldan, Mar 20 2013 *)
polygorial[k_, n_] := FullSimplify[ n!/2^n (k -2)^n*Pochhammer[2/(k -2), n]]; Array[polygorial[5, #] &, 17, 0] (* Robert G. Wilson v, Dec 17 2016 *)
-
a(n)=n!/2^n*prod(i=1,n,3*i-1) \\ Charles R Greathouse IV, Dec 13 2016
A084940
Heptagorials: n-th polygorial for k=7.
Original entry on oeis.org
1, 1, 7, 126, 4284, 235620, 19085220, 2137544640, 316356606720, 59791398670080, 14050978687468800, 4018579904616076800, 1374354327378698265600, 553864793933615401036800, 259762588354865623086259200, 140271797711627436466579968000, 86407427390362500863413260288000
Offset: 0
Daniel Dockery (peritus(AT)gmail.com), Jun 13 2003
-
a := n->n!/2^n*mul(5*i+2,i=0..n-1); [seq(a(j),j=0..30)];
-
polygorial[k_, n_] := FullSimplify[ n!/2^n (k -2)^n*Pochhammer[2/(k -2), n]]; Array[ polygorial[7, #] &, 16, 0] (* Robert G. Wilson v, Dec 26 2016 *)
Join[{1},FoldList[Times,PolygonalNumber[7,Range[20]]]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Jul 29 2019 *)
-
a(n)=n!/2^n*prod(i=1,n,5*i-3) \\ Charles R Greathouse IV, Dec 13 2016
A084944
Hendecagorials: n-th polygorial for k=11.
Original entry on oeis.org
1, 1, 11, 330, 19140, 1818300, 256380300, 50250538800, 13065140088000, 4350691649304000, 1805537034461160000, 913601739437346960000, 553642654099032257760000, 395854497680808064298400000, 329746796568113117560567200000, 316556924705388592858144512000000, 346946389477105897772526385152000000
Offset: 0
Daniel Dockery (peritus(AT)gmail.com), Jun 13 2003
-
a := n->n!/2^n*product(9*i+2,i=0..n-1); [seq(a(j),j=0..30)];
-
polygorial[k_, n_] := FullSimplify[ n!/2^n (k -2)^n*Pochhammer[2/(k - 2), n]]; Array[polygorial[11, #] &, 16, 0] (* Robert G. Wilson v, Dec 13 2016 *)
A084941
Octagorials: n-th polygorial for k=8.
Original entry on oeis.org
1, 1, 8, 168, 6720, 436800, 41932800, 5577062400, 981562982400, 220851671040000, 61838467891200000, 21086917550899200000, 8603462360766873600000, 4138265395528866201600000, 2317428621496165072896000000, 1494741460865026472017920000000, 1100129715196659483405189120000000
Offset: 0
Daniel Dockery (peritus(AT)gmail.com), Jun 13 2003
-
a := n->n!/2^n*product(6*i+2,i=0..n-1); [seq(a(j),j=0..30)];
-
polygorial[k_, n_] := FullSimplify[ n!/2^n (k -2)^n*Pochhammer[2/(k -2), n]]; Array[polygorial[8, #] &, 16, 0] (* Robert G. Wilson v, Dec 26 2016 *)
-
a(n) = n! / 2^n * prod(i=0, n-1, 6*i+2) \\ Felix Fröhlich, Dec 13 2016
A084942
Enneagorials: n-th polygorial for k=9.
Original entry on oeis.org
1, 1, 9, 216, 9936, 745200, 82717200, 12738448800, 2598643555200, 678245967907200, 220429939569840000, 87290256069656640000, 41375581377017247360000, 23128949989752641274240000, 15056946443328969469530240000, 11292709832496727102147680000000, 9666559616617198399438414080000000
Offset: 0
Daniel Dockery (peritus(AT)gmail.com), Jun 13 2003
-
a := n->n!/2^n*product(7*i+2,i=0..n-1); [seq(a(j),j=0..30)];
-
polygorial[k_, n_] := FullSimplify[ n!/2^n (k -2)^n*Pochhammer[2/(k -2), n]]; Array[polygorial[9, #] &, 16, 0] (* Robert G. Wilson v, Dec 26 2016 *)
-
a(n)=n!/2^n*prod(i=1,n,7*i-5) \\ Charles R Greathouse IV, Dec 13 2016
A084943
Decagorials: n-th polygorial for k=10.
Original entry on oeis.org
1, 1, 10, 270, 14040, 1193400, 150368400, 26314470000, 6104957040000, 1813172240880000, 670873729125600000, 302564051835645600000, 163384587991248624000000, 104075982550425373488000000, 77224379052415627128096000000, 66026844089815361194522080000000, 64442199831659792525853550080000000
Offset: 0
Daniel Dockery (peritus(AT)gmail.com), Jun 13 2003
-
a := n->n!/2^n*product(8*i+2,i=0..n-1); [seq(a(j),j=0..30)];
-
polygorial[k_, n_] := FullSimplify[ n!/2^n (k -2)^n*Pochhammer[2/(k -2), n]]; Array[polygorial[10, #] &, 14, 0] (* Robert G. Wilson v, Dec 26 2016 *)
-
a(n)=n!/2^n*prod(i=1,n,8*i-6) \\ Charles R Greathouse IV, Dec 13 2016
A334778
Triangle read by rows: T(n,k) is the number of permutations of 2 indistinguishable copies of 1..n arranged in a circle with exactly k local maxima.
Original entry on oeis.org
1, 0, 1, 0, 4, 2, 0, 18, 66, 6, 0, 72, 1168, 1192, 88, 0, 270, 16220, 61830, 33600, 1480, 0, 972, 202416, 2150688, 3821760, 1268292, 40272, 0, 3402, 2395540, 62178928, 272509552, 279561086, 62954948, 1476944, 0, 11664, 27517568, 1629254640, 15313310208, 36381368048, 24342647424, 3963672720, 71865728
Offset: 0
Triangle begins:
1;
0, 1;
0, 4, 2;
0, 18, 66, 6;
0, 72, 1168, 1192, 88;
0, 270, 16220, 61830, 33600, 1480;
0, 972, 202416, 2150688, 3821760, 1268292, 40272;
0, 3402, 2395540, 62178928, 272509552, 279561086, 62954948, 1476944;
...
The T(2,1) = 4 permutations of 1122 with 1 local maximum are 1122, 1221, 2112, 2211.
The T(2,2) = 2 permutations of 1122 with 2 local maxima are 1212, 2121.
The version for permutations of 1..n is
A263789.
-
CircPeaksBySig(sig, D)={
my(F(lev,p,q) = my(key=[lev,p,q], z); if(!mapisdefined(FC, key, &z),
my(m=sig[lev]); z = if(lev==1, if(p==0, binomial(m-1, q), 0), sum(i=0, p, sum(j=0, min(m-i, q), self()(lev-1, p-i, q-j+i) * binomial(m+2*(q-j)+1, 2*q+i-j+1) * binomial(q-j+i, i) * binomial(q+1, j) )));
mapput(FC, key, z)); z);
local(FC=Map());
vector(#D, i, my(k=D[i], lev=#sig); if(lev==1, k==1, my(m=sig[lev]); lev*sum(j=1, min(m,k), m*binomial(m-1,j-1)*F(lev-1,k-j,j-1)/j)));
}
Row(n)={ if(n==0, [1], CircPeaksBySig(vector(n,i,2), [0..n])) }
{ for(n=0, 8, print(Row(n))) }
A089759
Table T(n,k), 0<=k, 0<=n, read by antidiagonals, defined by T(n,k) = (k*n)! / (n!)^k.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 6, 6, 1, 1, 1, 24, 90, 20, 1, 1, 1, 120, 2520, 1680, 70, 1, 1, 1, 720, 113400, 369600, 34650, 252, 1, 1, 1, 5040, 7484400, 168168000, 63063000, 756756, 924, 1, 1, 1, 40320, 681080400, 137225088000, 305540235000, 11732745024, 17153136, 3432, 1, 1
Offset: 0
Row n=0: 1, 1, 1, 1, 1, 1, ... A000012
Row n=1: 1, 1, 2, 6, 24, 120, ... A000142
Row n=2: 1, 1, 6, 90, 2520, 113400, ... A000680
Row n=3: 1, 1, 20, 1680, 369600, 168168000, ... A014606
Row n=4: 1, 1, 70, 34650, 63063000, 305540235000, ... A014608
Row n=5: 1, 1, 252, 756756, 11732745024, 623360743125120, ... A014609
-
T:= (n, k)-> (k*n)!/(n!)^k:
seq(seq(T(n, d-n), n=0..d), d=0..10); # Alois P. Heinz, Aug 16 2012
-
T[n_, k_] := (k*n)!/(n!)^k; Table[T[n-k, k], {n, 0, 10}, {k, n, 0, -1}] // Flatten (* Jean-François Alcover, Dec 19 2015 *)
Comments