A334776
Total number of peaks in all permutations of 2 indistinguishable copies of 1..n.
Original entry on oeis.org
0, 3, 105, 4620, 283500, 23700600, 2610808200, 367783416000, 64607286744000, 13859305059600000, 3567385122341040000, 1085582734152396480000, 385634331725066424000000, 158175715893528308976000000, 74203019661816956710800000000, 39481403043334753112451840000000
Offset: 1
-
\\ PeaksBySig defined in A334774.
a(n)={my(u=PeaksBySig(vector(n,i,2), [0..n-1])); sum(k=1, #u, (k-1)*u[k])}
A334777
Total number of local maxima in all permutations of 2 indistinguishable copies of 1..n.
Original entry on oeis.org
1, 9, 195, 7140, 396900, 31185000, 3291888600, 449513064000, 77111922888000, 16235185926960000, 4116213602701200000, 1237059394731800640000, 434864246413372776000000, 176784623645708110032000000, 82297894534015170170160000000, 43496460979945066988294400000000
Offset: 1
-
\\ PeaksBySig defined in A334774.
a(n)={my(u=PeaksBySig(vector(n,i,2), [0..n-1])); sum(k=1, #u, k*u[k])}
A361651
Number T(n,k) of permutations p of [n] such that p(i), p(i+k), p(i+2k),... form an up-down sequence for i in [k]; triangle T(n,k), n>=0, 0<=k<=n, read by rows.
Original entry on oeis.org
1, 0, 1, 0, 1, 2, 0, 2, 3, 6, 0, 5, 6, 12, 24, 0, 16, 20, 30, 60, 120, 0, 61, 80, 90, 180, 360, 720, 0, 272, 350, 420, 630, 1260, 2520, 5040, 0, 1385, 1750, 2240, 2520, 5040, 10080, 20160, 40320, 0, 7936, 10080, 13440, 15120, 22680, 45360, 90720, 181440, 362880
Offset: 0
Triangle T(n,k) begins:
1;
0, 1;
0, 1, 2;
0, 2, 3, 6;
0, 5, 6, 12, 24;
0, 16, 20, 30, 60, 120;
0, 61, 80, 90, 180, 360, 720;
0, 272, 350, 420, 630, 1260, 2520, 5040;
0, 1385, 1750, 2240, 2520, 5040, 10080, 20160, 40320;
...
-
b:= proc(u, o) option remember; `if`(u+o=0, 1,
add(b(o-1+j, u-j), j=1..u))
end:
T:= (n, k)-> `if`(n=0, 1, `if`(k=0, 0, (l-> mul(b(s, 0), s=l)*
combinat[multinomial](n, l[]))([floor((n+i)/k)$i=0..k-1]))):
seq(seq(T(n, k), k=0..n), n=0..10);
-
multinomial[n_, k_List] := n!/Times @@ (k!);
b[u_, o_] := b[u, o] = If[u+o == 0, 1, Sum[b[o-1+j, u-j], {j, 1, u}]];
T[n_, k_] := If[n == 0, 1, If[k == 0, 0, Function[l, Product[b[s, 0], {s, l}]*multinomial[n, l]][Table[Floor[(n+i)/k], {i, 0, k-1}]]]];
Table[Table[T[n, k], {k, 0, n}], {n, 0, 10}] // Flatten (* Jean-François Alcover, Nov 22 2023, after Alois P. Heinz *)
A089975
Array read by ascending antidiagonals: T(n,k) is the number of n-letter words from a k-letter alphabet such that no letter appears more than twice.
Original entry on oeis.org
1, 0, 1, 0, 1, 1, 0, 1, 2, 1, 0, 0, 4, 3, 1, 0, 0, 6, 9, 4, 1, 0, 0, 6, 24, 16, 5, 1, 0, 0, 0, 54, 60, 25, 6, 1, 0, 0, 0, 90, 204, 120, 36, 7, 1, 0, 0, 0, 90, 600, 540, 210, 49, 8, 1, 0, 0, 0, 0, 1440, 2220, 1170, 336, 64, 9, 1, 0, 0, 0, 0, 2520, 8100, 6120, 2226, 504, 81, 10, 1
Offset: 0
Array begins:
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, ...
0, 1, 4, 9, 16, 25, 36, 49, 64, 81, 100, ...
0, 0, 6, 24, 60, 120, 210, 336, 504, 720, 990, ...
0, 0, 6, 54, 204, 540, 1170, 2226, 3864, 6264, 9630, ...
0, 0, 0, 90, 600, 2220, 6120, 14070, 28560, 52920, 91440, ...
0, 0, 0, 90, 1440, 8100, 29520, 83790, 201600, 430920, 842400, ...
0, 0, 0, 0, 2520, 25200, 128520, 463680, 1345680, 3356640, 7484400, ...
... - _Robert FERREOL_, Nov 03 2017
T(1, k) =
A001477(k); T(2, k) =
A000290(k); T(3, k) =
A007531(k); T(n, n) =
A012244(n); T(n, n+1) =
A036774(n); T(n, n+2) =
A003692(n+1); T(2*n, n) =
A000680(n); sum(T(n, k), n=0..2*k) =
A003011(k); sum(T(r, n-r), r=0..n) =
A089976(n).
See
A141765 for an irregular triangle version : T(n,k)=
A141765(k,n) for n <= 2k.
-
T:=(n,k)->add(n!*k!/(n-2*i)!/i!/(k-n+i)!/2^i,i=max(0,n-k)..n/2):
or
T:=proc(n,k) option remember :if n=0 then 1 elif n=1 then k elif k=0 then 0 else T(n, k-1)+n*T(n-1, k-1)+binomial(n,2)*T(n-2, k-1) fi end:
or
T:=(n,k)-> n!*coeff((1 + x + x^2/2)^k, x,n):
seq(seq(T(n-k,k),k=0..n),n=0..20);
# Robert FERREOL, Nov 07 2017
-
T[n_, k_] := Sum[n!*k!/(2^i*(n - 2 i)!*(k - n + i)!*i!), {i, Max[0, n - k], Floor[n/2]}];
Table[T[n-k , k], {n, 0, 11}, {k, 0, n}] // Flatten (* Jean-François Alcover, Dec 05 2017, after Robert FERREOL *)
-
from math import factorial as f
def T(n,k):
return sum(f(n)*f(k)//f(n-2*i)//f(i)//f(k-n+i)//2**i for i in range(max(0,n-k),n//2+1))
[T(n-k,k) for n in range(21) for k in range(n+1)]
# Robert FERREOL, Oct 17 2017
A117414
An Euler triangle.
Original entry on oeis.org
1, 0, 1, 0, 4, 1, 0, 48, 12, 1, 0, 1088, 272, 24, 1, 0, 39680, 9920, 880, 40, 1, 0, 2122752, 530688, 47104, 2160, 60, 1, 0, 156577792, 39144448, 3474688, 159488, 4480, 84, 1, 0, 15230058496, 3807514624, 337979392, 15514880, 436352, 8288, 112, 1
Offset: 0
Triangle begins:
1;
0, 1;
0, 4, 1;
0, 48, 12, 1;
0, 1088, 272, 24, 1;
0, 39680, 9920, 880, 40, 1;
0, 2122752, 530688, 47104, 2160, 60, 1;
...
-
nn = 6; B[n_] := (2 n)!/2^n; e[z_] := Sum[z^n/B[n], {n, 0, nn}];
Map[Select[#, # > 0 &] &,Table[B[n], {n, 0, nn}] CoefficientList[
Series[e[(u - 1) z] 1/e[-z], {z, 0, nn}], {z, u}]] // Grid (* Geoffrey Critzer, Apr 26 2023 *)
A133401
Diagonal of polygorial array T(n,k) = n-th polygorial for k = n, for n > 2.
Original entry on oeis.org
18, 576, 46200, 7484400, 2137544640, 981562982400, 678245967907200, 670873729125600000, 913601739437346960000, 1660189302321994373529600, 3923769742187622047360640000, 11805614186177306251101945600000, 44403795869109177300313209696000000
Offset: 3
a(3) = polygorial(3,3) = A006472(3) = product of the first 3 triangular numbers = 1*3*6 = 18.
a(4) = polygorial(4,4) = A001044(4) = product of the first 4 squares = 1*4*9*16 = 576.
a(5) = polygorial(5,5) = A084939(5) = product of the first 5 pentagonal numbers = 1*5*12*22*35 = 46200.
-
A133401 := proc(n) return mul((n/2-1)*m^2-(n/2-2)*m,m=1..n): end: seq(A133401(n),n=3..15); # Nathaniel Johnston, May 05 2011
-
Table[Product[m*(4 - n + m*(n-2))/2, {m, 1, n}],{n, 3, 20}] (* Vaclav Kotesovec, Feb 20 2015 *)
Table[FullSimplify[(n-2)^n * Gamma[n+1] * Gamma[n+2/(n-2)] / (2^n*Gamma[2/(n-2)])],{n,3,15}] (* Vaclav Kotesovec, Feb 20 2015 *)
polygorial[k_, n_] := FullSimplify[ n!/2^n (k -2)^n*Pochhammer[2/(k - 2), n]]; Array[ polygorial[#, #] &, 13, 3] (* Robert G. Wilson v, Dec 13 2016 *)
A157018
Triangle T(n,k) read by rows: number of k-lists (ordered k-sets) of disjoint 2-subsets of an n-set, n>1, 0
Original entry on oeis.org
1, 3, 6, 6, 10, 30, 15, 90, 90, 21, 210, 630, 28, 420, 2520, 2520, 36, 756, 7560, 22680, 45, 1260, 18900, 113400, 113400, 55, 1980, 41580, 415800, 1247400, 66, 2970, 83160, 1247400, 7484400, 7484400, 78, 4290, 154440, 3243240, 32432400, 97297200
Offset: 2
For n = 4 we have 12 lists: 6 1-lists: [{1,2}], [{1,3}], [{1,4}], [{2,3}], [{2,4}], [{3,4}] and 6 2-lists: [{1,2},{3,4}], [{3,4},{1,2}], [{1,3},{2,4}], [{2,4},{1,3}], [{1,4},{2,3}] and [{2,3},{1,4}].
-
Table[n!/(2^k (n - 2 k)!), {n, 2, 13}, {k, Floor[n/2]}] // Flatten (* Michael De Vlieger, Nov 04 2016 *)
-
nmax=100;a=vector(floor(nmax^2/4));idx=0;
for(n=2,nmax,for(k=1,n\2,a[idx++]=n!/(2^k*(n-2*k)!)));
a \\ Stanislav Sykora, Nov 03 2016
A177284
Number of permutations of 2 copies of 1..n with all adjacent differences <= 3 in absolute value.
Original entry on oeis.org
1, 1, 6, 90, 2520, 41580, 516180, 6068622, 76331906, 958679970, 11679900408, 138047313960, 1610654864328, 18649754961744, 214256589488616, 2439692058769566, 27562317214408488, 309367132582535226, 3453299423388485028, 38354816922190327314, 424048220090513056908
Offset: 0
Original entry on oeis.org
1, 720, 1779148800, 148953184174080000, 126983900296423931904000000, 614812159599342234168301977600000000, 11942354952042770431904585727413846016000000000
Offset: 0
Cf.
A210279,
A210278,
A210277,
A000680,
A067630,
A084939,
A084940,
A084941,
A084942,
A084943,
A084944,
A087127,
A001147,
A132101
A357297
T(m,n) is the number of linear extensions of n fork-join DAGs of width m, read by downward antidiagonals.
Original entry on oeis.org
1, 1, 1, 6, 1, 1, 90, 20, 2, 1, 2520, 1680, 280, 6, 1, 113400, 369600, 277200, 9072, 24, 1, 7484400, 168168000, 1009008000, 163459296, 532224, 120, 1, 681080400, 137225088000, 9777287520000, 15205637551104, 237124952064, 49420800, 720, 1, 81729648000, 182509367040000, 207786914375040000, 4847253138540933120, 765985681152147456, 689598074880000, 6671808000, 5040, 1
Offset: 0
T(3,1) = 6 is the number of linear extensions of one fork-join DAG of width 3. Let the DAG be labeled as follows:
1
/ | \
2 3 4
\ | /
5
Then the six linear extensions are:
1 2 3 4 5
1 2 4 3 5
1 3 2 4 5
1 3 4 1 5
1 4 2 3 5
1 4 3 2 5
-
(* Formula *)
T[m_, n_] := (n*(m+2))!/((m+1)^n*(m+2)^n)
(* 5 X 5 Table *)
Table[T[m, n], {m, 0, 5}, {n, 0, 5}]
(* Eight rows of the triangle *)
Table[Table[T[m, n - m], {m, 0, n}], {n, 0, 8}]
(* As a sequence *)
Flatten[Table[Table[T[m, n - m], {m, 0, n}], {n, 0, 8}]]
Comments