A113672
Self-convolution 6th power equals A113666, where a(n) = n*A113666(n-1) for n>=1, with a(0)=1.
Original entry on oeis.org
1, 1, 12, 261, 7784, 287145, 12452256, 616408534, 34178166288, 2094929612766, 140568321437700, 10246761825942972, 806426083421461440, 68162575162983744079, 6159817390723312545936, 592796927295190983761100
Offset: 0
-
{a(n)=local(A=1+x*O(x^n));for(i=1,n, A=1+x*deriv(x*A^6));polcoeff(A,n,x)}
A113673
Self-convolution 7th power equals A113667, where a(n) = n*A113667(n-1) for n>=1, with a(0)=1.
Original entry on oeis.org
1, 1, 14, 357, 12488, 540155, 27453258, 1591997162, 103362754048, 7415833578300, 582246803894350, 49648781879763836, 4569614321483063496, 451606519694514555917, 47709061981854231868308
Offset: 0
-
{a(n)=local(A=1+x*O(x^n));for(i=1,n, A=1+x*deriv(x*A^7));polcoeff(A,n,x)}
A113674
Self-convolution 8th power equals A113668, where a(n) = n*A113668(n-1) for n>=1, with a(0)=1.
Original entry on oeis.org
1, 1, 16, 468, 18784, 932030, 54321840, 3611129620, 268687287744, 22085224470873, 1986091468594160, 193935237759263880, 20436302307290415264, 2311999369405933686648, 279558778132903394262032
Offset: 0
-
{a(n)=local(A=1+x*O(x^n));for(i=1,n, A=1+x*deriv(x*A^8));polcoeff(A,n,x)}
A190823
Number of permutations of 2 copies of 1..n introduced in order 1..n with no element equal to another within a distance of 2.
Original entry on oeis.org
1, 0, 0, 1, 10, 99, 1146, 15422, 237135, 4106680, 79154927, 1681383864, 39034539488, 983466451011, 26728184505750, 779476074425297, 24281301468714902, 804688068731837874, 28269541494090294129, 1049450257149017422000, 41050171013933837206545
Offset: 0
All solutions for n=4 (read downwards):
1 1 1 1 1 1 1 1 1 1
2 2 2 2 2 2 2 2 2 2
3 3 3 3 3 3 3 3 3 3
4 4 4 4 1 4 4 1 4 4
1 1 2 1 4 2 1 4 2 2
3 3 1 2 2 3 2 3 1 3
2 4 4 4 3 4 3 2 3 1
4 2 3 3 4 1 4 4 4 4
Distance of 1 instead of 2 gives |
A000806|.
-
I:=[1,0,0,1,10,99]; [n le 5 select I[n] else 2*n*Self(n-1) -2*(3*n-8)*Self(n-2) +2*(3*n-11)*Self(n-3) -2*(n-5)*Self(n-4) -Self(n-5): n in [1..40]]; // G. C. Greubel, Dec 03 2023
-
a[0]=1; a[1]=0; a[2]=0; a[3]=1; a[4]=10; a[5]=99; a[n_] := a[n] = (2*n+2) a[n-1] - (6*n-10) a[n-2] + (6*n-16) a[n-3] - (2*n-8) a[n-4] - a[n-5]; Array[a, 20, 0] (* based on Sullivan's formula, Giovanni Resta, Mar 20 2017 *)
dtui[{}]:={{}};dtui[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@dtui[Complement[set,s]]]/@Table[{i,j},{j,Select[set,#>i+2&]}];
Table[Length[dtui[Range[n]]],{n,0,12,2}] (* Gus Wiseman, Feb 27 2019 *)
-
@CachedFunction
def a(n): # a = A190823
if (n<6): return (1,0,0,1,10,99)[n]
else: return 2*(n+1)*a(n-1) - 2*(3*n-5)*a(n-2) + 2*(3*n-8)*a(n-3) - 2*(n-4)*a(n-4) - a(n-5)
[a(n) for n in range(41)] # G. C. Greubel, Dec 03 2023
A280778
Numerators of coefficients in asymptotic expansion of M_n (number of monolithic chord diagrams, A280775).
Original entry on oeis.org
1, -4, -6, -154, -1610, -34588, -4666292, -553625626, -1158735422, -388434091184, -31268175015478, -2796356409576766, -4624948938397276052, -1691272281281652408568, -2154089954877183990112, -170222948041126582837968646, -5761785676811885455064909606, -55629298859254851627617870836
Offset: 0
Coefficients are 1, -4, -6, -154/3, -1610/3, -34588/5, -4666292/45, -553625626/315, -1158735422/35, ...
-
A000699_seq(N) = {
my(a = vector(N)); a[1] = 1;
for (n=2, N, a[n] = sum(k=1, n-1, (2*k-1)*a[k]*a[n-k])); a;
};
seq(N) = {
my(M = subst(x*Ser(A000699_seq(N)), x, x/(1-x)^2));
Vec(x/(1-x)*exp(1-x/2-(1-x)^2/(2*x)*(2*M + M^2))/M);
};
apply(numerator, seq(18)) \\ Gheorghe Coserea, Jan 22 2017
A280779
Denominators of coefficients in asymptotic expansion of M_n (number of monolithic chord diagrams, A280775).
Original entry on oeis.org
1, 1, 1, 3, 3, 5, 45, 315, 35, 567, 2025, 7425, 467775, 6081075, 257985, 638512875, 638512875, 172297125, 13956067125, 74246277105, 3093594879375, 14992036723125, 2143861251406875, 16436269594119375, 4226469324202125, 48028060502296875, 593531957565421875, 56437147443285984375
Offset: 0
Coefficients are 1, -4,-6, -154/3, -1610/3, -34588/5, -4666292/45, -553625626/315, -1158735422/35, ...
-
A000699_seq(N) = {
my(a = vector(N)); a[1] = 1;
for (n=2, N, a[n] = sum(k=1, n-1, (2*k-1)*a[k]*a[n-k])); a;
};
seq(N) = {
my(M = subst(x*Ser(A000699_seq(N)), x, x/(1-x)^2));
Vec(x/(1-x)*exp(1-x/2-(1-x)^2/(2*x)*(2*M + M^2))/M);
};
apply(numerator, seq(18)) \\ Gheorghe Coserea, Jan 22 2017
A306386
Number of chord diagrams with n chords all having arc length at least 3.
Original entry on oeis.org
1, 0, 0, 1, 7, 68, 837, 11863, 189503, 3377341, 66564396, 1439304777, 33902511983, 864514417843, 23735220814661, 698226455579492, 21914096529153695, 731009183350476805, 25829581529376423945, 963786767538027630275, 37871891147795243899204, 1563295398737378236910447
Offset: 0
The a(8) = 7 2-uniform set partitions with all arc lengths at least 3:
{{1,4},{2,6},{3,7},{5,8}}
{{1,4},{2,7},{3,6},{5,8}}
{{1,5},{2,6},{3,7},{4,8}}
{{1,5},{2,6},{3,8},{4,7}}
{{1,5},{2,7},{3,6},{4,8}}
{{1,6},{2,5},{3,7},{4,8}}
{{1,6},{2,5},{3,8},{4,7}}
Cf.
A000296,
A000699,
A001006,
A001147,
A001610,
A003436,
A038041,
A054726,
A135042,
A170941,
A190823,
A278990,
A306419,
A322402,
A324011,
A324169.
-
a:= proc(n) option remember; `if`(n<8, [1, 0$2, 1, 7, 68, 837, 11863][n+1],
((8*n^4-64*n^3+142*n^2-66*n+109) *a(n-1)
-(24*n^4-248*n^3+870*n^2-1106*n+241)*a(n-2)
+(24*n^4-264*n^3+982*n^2-1270*n+145)*a(n-3)
-(8*n^4-96*n^3+374*n^2-486*n+33) *a(n-4)
-(4*n^3-24*n^2+39*n-2) *a(n-5))/(4*n^3-36*n^2+99*n-69))
end:
seq(a(n), n=0..23); # Alois P. Heinz, Feb 27 2019
-
dtui[{},]:={{}};dtui[set:{i,___},n_]:=Join@@Function[s,Prepend[#,s]&/@dtui[Complement[set,s],n]]/@Table[{i,j},{j,Switch[i,1,Select[set,3<#i+2&]]}];
Table[Length[dtui[Range[n],n]],{n,0,12,2}]
A376125
a(n) = 1 + Sum_{k=0..n-1} (2*k+1) * a(k) * a(n-k-1).
Original entry on oeis.org
1, 2, 9, 67, 681, 8556, 126253, 2124340, 39991633, 831271006, 18893178381, 465972248083, 12394713108433, 353750057246236, 10784915257548041, 349874160411051511, 12036066260440602401, 437714593034154481686, 16780944423208533034861, 676482338975579658794689
Offset: 0
-
a[n_] := a[n] = 1 + Sum[(2 k + 1) a[k] a[n - k - 1], {k, 0, n - 1}]; Table[a[n], {n, 0, 19}]
nmax = 19; A[] = 0; Do[A[x] = 1/((1 - x) (1 - x A[x] - 2 x^2 A'[x])) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
A268814
Number of purely crossing partitions of [n].
Original entry on oeis.org
1, 0, 0, 0, 1, 0, 5, 14, 62, 298, 1494, 8140, 47146, 289250, 1873304, 12756416, 91062073, 679616480, 5290206513, 42858740990, 360686972473, 3147670023632, 28439719809159, 265647698228954, 2561823514680235, 25475177517626196, 260922963832247729, 2749617210928715246
Offset: 0
G.f.: A(x) = 1 + x^4 + 5*x^6 + 14*x^7 + 62*x^8 + 298*x^9 + 1494*x^10 + 8140*x^11 + 47146*x^12 +...
Cf.
A000108 (non-crossing partitions),
A000110,
A000699,
A001263,
A002662,
A005493,
A016098,
A054726,
A099947,
A268815,
A306417,
A324011,
A324166,
A324172,
A324173,
A324324.
-
n = 30; F = x*Sum[BellB[k] x^k, {k, 0, n}] + O[x]^n; B = ComposeSeries[1/( InverseSeries[F, w]/w)-1, x/(1+x) + O[x]^n]; A = (B-x)/(1+x); Join[{1}, CoefficientList[A, x] // Rest] (* Jean-François Alcover, Feb 23 2016, adapted from K. J. Dykema's code *)
intvQ[set_]:=Or[set=={},Sort[set]==Range[Min@@set,Max@@set]];
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
Table[Length[Select[sps[Range[n]],And[!MatchQ[#,{_,{_,x_,y_,_},_}/;x+1==y],#=={}||And@@Not/@intvQ/@Union@@@Subsets[#,{1,Length[#]-1}],#=={}||Position[#,1][[1,1]]!=Position[#,n][[1,1]]]&]],{n,0,10}] (* Gus Wiseman, Feb 23 2019 *)
-
lista(nn) = {c = x/serreverse(x*serlaplace(exp(exp(x+x*O(x^nn)) -1))); b = subst(c, x, x/(1+x)+ O(x^nn)); vb = Vec(b-1); va = vector(#vb); va[1] = 0; va[2] = 0; for (k=3, #va, va[k] = vb[k] - va[k-1]; ); concat(1, va); }
-
{a(n) = my(A=1+x^3); for(i=1, n, A = sum(m=0, n, x^m/prod(k=1, m, (1+x)^2*A - k*x +x*O(x^n)) )/(1+x) ); polcoeff( A, n)}
for(n=0,35,print1(a(n),", ")) \\ Paul D. Hanna, Mar 07 2016
-
{Stirling2(n, k) = n!*polcoeff(((exp(x+x*O(x^n)) - 1)^k)/k!, n)}
{Bell(n) = sum(k=0,n, Stirling2(n, k) )}
{a(n) = my(A=1+x); for(i=1, n, A = sum(m=0, n, Bell(m)*x^m/((1+x +x*O(x^n))^(2*m+1)*A^m)) ); polcoeff(A, n)}
for(n=0,25,print1(a(n),", ")) \\ Paul D. Hanna, Mar 07 2016
A286795
Triangle T(n,k) read by rows: coefficients of polynomials P_n(t) defined in Formula section.
Original entry on oeis.org
1, 1, 4, 3, 27, 31, 5, 248, 357, 117, 7, 2830, 4742, 2218, 314, 9, 38232, 71698, 42046, 9258, 690, 11, 593859, 1216251, 837639, 243987, 30057, 1329, 13, 10401712, 22877725, 17798029, 6314177, 1071809, 81963, 2331, 15, 202601898, 472751962, 404979234, 166620434, 35456432, 3857904, 196532, 3812, 17, 4342263000, 10651493718, 9869474106, 4561150162, 1149976242, 160594860, 11946360, 426852, 5904, 19
Offset: 0
A(x;t) = 1 + x + (4 + 3*t)*x^2 + (27 + 31*t + 5*t^2)*x^3 + ...
Triangle starts:
n\k [0] [1] [2] [3] [4] [5] [6] [7]
[0] 1;
[1] 1;
[2] 4, 3;
[3] 27, 31, 5;
[4] 248, 357, 117, 7;
[5] 2830, 4742, 2218, 314, 9;
[6] 38232, 71698, 42046, 9258, 690, 11;
[7] 593859, 1216251, 837639, 243987, 30057, 1329, 13;
[8] 10401712, 22877725, 17798029, 6314177, 1071809, 81963, 2331, 15;
[9] ...
-
max = 11; y0[x_, t_] = 1; y1[x_, t_] = 0; For[n = 1, n <= max, n++, y1[x_, t_] = ((1 + x*(1 + 2 t + x t^2) y0[x, t]^2 + t (1 - t)*x^2*y0[x, t]^3 + 2 x^2 y0[x, t] D[y0[x, t], x]))/(1 + 2 x*t) + O[x]^n // Normal; y0[x_, t_] = y1[x, t]];
row[n_] := CoefficientList[Coefficient[y0[x, t], x, n], t];
Table[row[n], {n, 0, max - 1}] // Flatten (* Jean-François Alcover, May 23 2017, adapted from PARI *)
-
A286795_ser(N, t='t) = {
my(x='x+O('x^N), y0=1, y1=0, n=1);
while(n++,
y1 = (1 + x*(1 + 2*t + x*t^2)*y0^2 + t*(1-t)*x^2*y0^3 + 2*x^2*y0*y0');
y1 = y1 / (1+2*x*t); if (y1 == y0, break()); y0 = y1;); y0;
};
concat(apply(p->Vecrev(p), Vec(A286795_ser(11))))
\\ test: y=A286795_ser(50); 0 == 1 - (1 + 2*x*t)*y + x*(1 + 2*t + x*t^2)*y^2 + t*(1-t)*x^2*y^3 + 2*x^2*y*y'
Comments