cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 79 results. Next

A113672 Self-convolution 6th power equals A113666, where a(n) = n*A113666(n-1) for n>=1, with a(0)=1.

Original entry on oeis.org

1, 1, 12, 261, 7784, 287145, 12452256, 616408534, 34178166288, 2094929612766, 140568321437700, 10246761825942972, 806426083421461440, 68162575162983744079, 6159817390723312545936, 592796927295190983761100
Offset: 0

Views

Author

Paul D. Hanna, Nov 04 2005

Keywords

Crossrefs

Programs

  • PARI
    {a(n)=local(A=1+x*O(x^n));for(i=1,n, A=1+x*deriv(x*A^6));polcoeff(A,n,x)}

Formula

G.f. A(x) satisfies:
(1) A(x) = 1 + x*d/dx[x*A(x)^6],
(2) [x^n] exp( x*A(x)^6 ) * (n + 1 - A(x)) = 0 for n > 0,
(3) [x^n] exp( n * x*A(x)^6 ) * (2 - A(x)) = 0 for n > 0. - Paul D. Hanna, May 27 2018

A113673 Self-convolution 7th power equals A113667, where a(n) = n*A113667(n-1) for n>=1, with a(0)=1.

Original entry on oeis.org

1, 1, 14, 357, 12488, 540155, 27453258, 1591997162, 103362754048, 7415833578300, 582246803894350, 49648781879763836, 4569614321483063496, 451606519694514555917, 47709061981854231868308
Offset: 0

Views

Author

Paul D. Hanna, Nov 04 2005

Keywords

Crossrefs

Programs

  • PARI
    {a(n)=local(A=1+x*O(x^n));for(i=1,n, A=1+x*deriv(x*A^7));polcoeff(A,n,x)}

Formula

G.f. A(x) satisfies:
(1) A(x) = 1 + x*d/dx[x*A(x)^7],
(2) [x^n] exp( x*A(x)^7 ) * (n + 1 - A(x)) = 0 for n > 0,
(3) [x^n] exp( n * x*A(x)^7 ) * (2 - A(x)) = 0 for n > 0. - Paul D. Hanna, May 27 2018

A113674 Self-convolution 8th power equals A113668, where a(n) = n*A113668(n-1) for n>=1, with a(0)=1.

Original entry on oeis.org

1, 1, 16, 468, 18784, 932030, 54321840, 3611129620, 268687287744, 22085224470873, 1986091468594160, 193935237759263880, 20436302307290415264, 2311999369405933686648, 279558778132903394262032
Offset: 0

Views

Author

Paul D. Hanna, Nov 04 2005

Keywords

Crossrefs

Programs

  • PARI
    {a(n)=local(A=1+x*O(x^n));for(i=1,n, A=1+x*deriv(x*A^8));polcoeff(A,n,x)}

Formula

G.f. A(x) satisfies:
(1) A(x) = 1 + x*d/dx[x*A(x)^8],
(2) [x^n] exp( x*A(x)^8 ) * (n + 1 - A(x)) = 0 for n > 0,
(3) [x^n] exp( n * x*A(x)^8 ) * (2 - A(x)) = 0 for n > 0. - Paul D. Hanna, May 27 2018

A190823 Number of permutations of 2 copies of 1..n introduced in order 1..n with no element equal to another within a distance of 2.

Original entry on oeis.org

1, 0, 0, 1, 10, 99, 1146, 15422, 237135, 4106680, 79154927, 1681383864, 39034539488, 983466451011, 26728184505750, 779476074425297, 24281301468714902, 804688068731837874, 28269541494090294129, 1049450257149017422000, 41050171013933837206545
Offset: 0

Views

Author

R. H. Hardin, May 21 2011

Keywords

Comments

From Gus Wiseman, Feb 27 2019: (Start)
Also the number of 2-uniform set partitions of {1..2n} such that no block has its two vertices differing by less than 3. For example, the a(4) = 10 set partitions are:
{{1,4}, {2,6}, {3,7}, {5,8}}
{{1,4}, {2,7}, {3,6}, {5,8}}
{{1,5}, {2,6}, {3,7}, {4,8}}
{{1,5}, {2,6}, {3,8}, {4,7}}
{{1,5}, {2,7}, {3,6}, {4,8}}
{{1,5}, {2,8}, {3,6}, {4,7}}
{{1,6}, {2,5}, {3,7}, {4,8}}
{{1,6}, {2,5}, {3,8}, {4,7}}
{{1,7}, {2,5}, {3,6}, {4,8}}
{{1,8}, {2,5}, {3,6}, {4,7}}
(End)

Examples

			All solutions for n=4 (read downwards):
  1    1    1    1    1    1    1    1    1    1
  2    2    2    2    2    2    2    2    2    2
  3    3    3    3    3    3    3    3    3    3
  4    4    4    4    1    4    4    1    4    4
  1    1    2    1    4    2    1    4    2    2
  3    3    1    2    2    3    2    3    1    3
  2    4    4    4    3    4    3    2    3    1
  4    2    3    3    4    1    4    4    4    4
		

Crossrefs

Distance of 1 instead of 2 gives |A000806|.
Column k=3 of A293157.
Cf. A000699, A001147 (2-uniform set partitions), A003436, A005493, A011968, A170941, A278990 (distance 2+ version), A306386 (cyclical version).

Programs

  • Magma
    I:=[1,0,0,1,10,99]; [n le 5 select I[n] else 2*n*Self(n-1) -2*(3*n-8)*Self(n-2) +2*(3*n-11)*Self(n-3) -2*(n-5)*Self(n-4) -Self(n-5): n in [1..40]]; // G. C. Greubel, Dec 03 2023
    
  • Mathematica
    a[0]=1; a[1]=0; a[2]=0; a[3]=1; a[4]=10; a[5]=99; a[n_] := a[n] = (2*n+2) a[n-1] - (6*n-10) a[n-2] + (6*n-16) a[n-3] - (2*n-8) a[n-4] - a[n-5]; Array[a, 20, 0] (* based on Sullivan's formula, Giovanni Resta, Mar 20 2017 *)
    dtui[{}]:={{}};dtui[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@dtui[Complement[set,s]]]/@Table[{i,j},{j,Select[set,#>i+2&]}];
    Table[Length[dtui[Range[n]]],{n,0,12,2}] (* Gus Wiseman, Feb 27 2019 *)
  • SageMath
    @CachedFunction
    def a(n): # a = A190823
        if (n<6): return (1,0,0,1,10,99)[n]
        else: return 2*(n+1)*a(n-1) - 2*(3*n-5)*a(n-2) + 2*(3*n-8)*a(n-3) - 2*(n-4)*a(n-4) - a(n-5)
    [a(n) for n in range(41)] # G. C. Greubel, Dec 03 2023

Formula

a(n) = 2*(n+1)*a(n-1) - 2*(3*n-5)*a(n-2) + 2*(3*n-8)*a(n-3) - 2*(n-4)*a(n-4) - a(n-5) (proved). - Everett Sullivan, Mar 16 2017
a(n) ~ 2^(n+1/2) * n^n / exp(n+2), based on Sullivan's formula. - Vaclav Kotesovec, Mar 21 2017

Extensions

a(16)-a(20) (using Everett Sullivan's formula) from Giovanni Resta, Mar 20 2017
a(0)=1 prepended by Alois P. Heinz, Oct 17 2017

A280778 Numerators of coefficients in asymptotic expansion of M_n (number of monolithic chord diagrams, A280775).

Original entry on oeis.org

1, -4, -6, -154, -1610, -34588, -4666292, -553625626, -1158735422, -388434091184, -31268175015478, -2796356409576766, -4624948938397276052, -1691272281281652408568, -2154089954877183990112, -170222948041126582837968646, -5761785676811885455064909606, -55629298859254851627617870836
Offset: 0

Views

Author

N. J. A. Sloane, Jan 19 2017

Keywords

Examples

			Coefficients are 1, -4, -6, -154/3, -1610/3, -34588/5, -4666292/45, -553625626/315, -1158735422/35, ...
		

Crossrefs

Programs

  • PARI
    A000699_seq(N) = {
      my(a = vector(N)); a[1] = 1;
      for (n=2, N, a[n] = sum(k=1, n-1, (2*k-1)*a[k]*a[n-k])); a;
    };
    seq(N) = {
      my(M = subst(x*Ser(A000699_seq(N)), x, x/(1-x)^2));
      Vec(x/(1-x)*exp(1-x/2-(1-x)^2/(2*x)*(2*M + M^2))/M);
    };
    apply(numerator, seq(18))  \\ Gheorghe Coserea, Jan 22 2017

Extensions

More terms from Gheorghe Coserea, Jan 22 2017

A280779 Denominators of coefficients in asymptotic expansion of M_n (number of monolithic chord diagrams, A280775).

Original entry on oeis.org

1, 1, 1, 3, 3, 5, 45, 315, 35, 567, 2025, 7425, 467775, 6081075, 257985, 638512875, 638512875, 172297125, 13956067125, 74246277105, 3093594879375, 14992036723125, 2143861251406875, 16436269594119375, 4226469324202125, 48028060502296875, 593531957565421875, 56437147443285984375
Offset: 0

Views

Author

N. J. A. Sloane, Jan 19 2017

Keywords

Comments

This has the same start as two other sequences, A241591 and A248592, but appears to be different from both.

Examples

			Coefficients are 1, -4,-6, -154/3, -1610/3, -34588/5, -4666292/45, -553625626/315, -1158735422/35, ...
		

Crossrefs

Programs

  • PARI
    A000699_seq(N) = {
      my(a = vector(N)); a[1] = 1;
      for (n=2, N, a[n] = sum(k=1, n-1, (2*k-1)*a[k]*a[n-k])); a;
    };
    seq(N) = {
      my(M = subst(x*Ser(A000699_seq(N)), x, x/(1-x)^2));
      Vec(x/(1-x)*exp(1-x/2-(1-x)^2/(2*x)*(2*M + M^2))/M);
    };
    apply(numerator, seq(18))  \\ Gheorghe Coserea, Jan 22 2017

A306386 Number of chord diagrams with n chords all having arc length at least 3.

Original entry on oeis.org

1, 0, 0, 1, 7, 68, 837, 11863, 189503, 3377341, 66564396, 1439304777, 33902511983, 864514417843, 23735220814661, 698226455579492, 21914096529153695, 731009183350476805, 25829581529376423945, 963786767538027630275, 37871891147795243899204, 1563295398737378236910447
Offset: 0

Views

Author

Gus Wiseman, Feb 26 2019

Keywords

Comments

A cyclical form of A190823.
Also the number of 2-uniform set partitions of {1...2n} such that, when the vertices are arranged uniformly around a circle, no block has its two vertices separated by an arc length of less than 3.

Examples

			The a(8) = 7 2-uniform set partitions with all arc lengths at least 3:
  {{1,4},{2,6},{3,7},{5,8}}
  {{1,4},{2,7},{3,6},{5,8}}
  {{1,5},{2,6},{3,7},{4,8}}
  {{1,5},{2,6},{3,8},{4,7}}
  {{1,5},{2,7},{3,6},{4,8}}
  {{1,6},{2,5},{3,7},{4,8}}
  {{1,6},{2,5},{3,8},{4,7}}
		

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<8, [1, 0$2, 1, 7, 68, 837, 11863][n+1],
          ((8*n^4-64*n^3+142*n^2-66*n+109)    *a(n-1)
          -(24*n^4-248*n^3+870*n^2-1106*n+241)*a(n-2)
          +(24*n^4-264*n^3+982*n^2-1270*n+145)*a(n-3)
          -(8*n^4-96*n^3+374*n^2-486*n+33)    *a(n-4)
          -(4*n^3-24*n^2+39*n-2)              *a(n-5))/(4*n^3-36*n^2+99*n-69))
        end:
    seq(a(n), n=0..23);  # Alois P. Heinz, Feb 27 2019
  • Mathematica
    dtui[{},]:={{}};dtui[set:{i,___},n_]:=Join@@Function[s,Prepend[#,s]&/@dtui[Complement[set,s],n]]/@Table[{i,j},{j,Switch[i,1,Select[set,3<#i+2&]]}];
    Table[Length[dtui[Range[n],n]],{n,0,12,2}]

Formula

a(n) is even <=> n in { A135042 }. - Alois P. Heinz, Feb 27 2019

Extensions

a(10)-a(16) from Alois P. Heinz, Feb 26 2019
a(17)-a(21) from Alois P. Heinz, Feb 27 2019

A376125 a(n) = 1 + Sum_{k=0..n-1} (2*k+1) * a(k) * a(n-k-1).

Original entry on oeis.org

1, 2, 9, 67, 681, 8556, 126253, 2124340, 39991633, 831271006, 18893178381, 465972248083, 12394713108433, 353750057246236, 10784915257548041, 349874160411051511, 12036066260440602401, 437714593034154481686, 16780944423208533034861, 676482338975579658794689
Offset: 0

Views

Author

Ilya Gutkovskiy, Sep 11 2024

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := a[n] = 1 + Sum[(2 k + 1) a[k] a[n - k - 1], {k, 0, n - 1}]; Table[a[n], {n, 0, 19}]
    nmax = 19; A[] = 0; Do[A[x] = 1/((1 - x) (1 - x A[x] - 2 x^2 A'[x])) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]

Formula

G.f. A(x) satisfies: A(x) = 1 / ( (1 - x) * (1 - x * A(x) - 2 * x^2 * A'(x)) ).
a(n) ~ c * 2^n * n * n!, where c = 0.6018110636400677977754542011395053310779724922160159... - Vaclav Kotesovec, Sep 11 2024
a(n) = 1 + n * Sum_{k=0..n-1} a(k) * a(n-1-k). - Seiichi Manyama, Jul 15 2025

A268814 Number of purely crossing partitions of [n].

Original entry on oeis.org

1, 0, 0, 0, 1, 0, 5, 14, 62, 298, 1494, 8140, 47146, 289250, 1873304, 12756416, 91062073, 679616480, 5290206513, 42858740990, 360686972473, 3147670023632, 28439719809159, 265647698228954, 2561823514680235, 25475177517626196, 260922963832247729, 2749617210928715246
Offset: 0

Views

Author

Michel Marcus, Feb 14 2016

Keywords

Comments

For the definition of a purely crossing partition refer to Dykema link (see PC(n) Definition 1.2 and Table 2).
From Gus Wiseman, Feb 23 2019: (Start)
For n >= 1, a set partition of {1,...,n} is purely crossing if it is topologically connected (A099947), has no successive elements in the same block (A000110(n - 1)), and the first and last vertices belong to different blocks (A005493(n - 2)). For example, the a(4) = 1, a(6) = 5, and a(7) = 14 purely crossing set partitions are:
{{13}{24}} {{135}{246}} {{13}{246}{57}}
{{13}{25}{46}} {{13}{257}{46}}
{{14}{25}{36}} {{135}{26}{47}}
{{14}{26}{35}} {{135}{27}{46}}
{{15}{24}{36}} {{136}{24}{57}}
{{136}{25}{47}}
{{14}{257}{36}}
{{14}{26}{357}}
{{146}{25}{37}}
{{146}{27}{35}}
{{15}{246}{37}}
{{15}{247}{36}}
{{16}{24}{357}}
{{16}{247}{35}}
(End)

Examples

			G.f.: A(x) = 1 + x^4 + 5*x^6 + 14*x^7 + 62*x^8 + 298*x^9 + 1494*x^10 + 8140*x^11 + 47146*x^12 +...
		

Crossrefs

Programs

  • Mathematica
    n = 30; F = x*Sum[BellB[k] x^k, {k, 0, n}] + O[x]^n; B = ComposeSeries[1/( InverseSeries[F, w]/w)-1, x/(1+x) + O[x]^n]; A = (B-x)/(1+x); Join[{1}, CoefficientList[A, x] // Rest] (* Jean-François Alcover, Feb 23 2016, adapted from K. J. Dykema's code *)
    intvQ[set_]:=Or[set=={},Sort[set]==Range[Min@@set,Max@@set]];
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    Table[Length[Select[sps[Range[n]],And[!MatchQ[#,{_,{_,x_,y_,_},_}/;x+1==y],#=={}||And@@Not/@intvQ/@Union@@@Subsets[#,{1,Length[#]-1}],#=={}||Position[#,1][[1,1]]!=Position[#,n][[1,1]]]&]],{n,0,10}] (* Gus Wiseman, Feb 23 2019 *)
  • PARI
    lista(nn) = {c = x/serreverse(x*serlaplace(exp(exp(x+x*O(x^nn)) -1))); b = subst(c, x, x/(1+x)+ O(x^nn)); vb = Vec(b-1); va = vector(#vb); va[1] = 0; va[2] = 0; for (k=3, #va, va[k] = vb[k] - va[k-1]; ); concat(1, va); }
    
  • PARI
    {a(n) = my(A=1+x^3); for(i=1, n, A = sum(m=0, n, x^m/prod(k=1, m, (1+x)^2*A - k*x +x*O(x^n)) )/(1+x) ); polcoeff( A, n)}
    for(n=0,35,print1(a(n),", ")) \\ Paul D. Hanna, Mar 07 2016
    
  • PARI
    {Stirling2(n, k) = n!*polcoeff(((exp(x+x*O(x^n)) - 1)^k)/k!, n)}
    {Bell(n) = sum(k=0,n, Stirling2(n, k) )}
    {a(n) = my(A=1+x); for(i=1, n, A = sum(m=0, n, Bell(m)*x^m/((1+x +x*O(x^n))^(2*m+1)*A^m)) ); polcoeff(A, n)}
    for(n=0,25,print1(a(n),", ")) \\ Paul D. Hanna, Mar 07 2016

Formula

G.f.: G(x) satisfies B(x) = x + (1 + x)*G(x) where B(x) is the g.f. of A268815 (see A(x) in Dykema link p. 7).
From Paul D. Hanna, Mar 07 2016: (Start)
O.g.f. A(x) satisfies:
(1) A(x) = Sum_{n>=0} A000110(n)*x^n / ((1+x)^(2*n+1) * A(x)^n), where A000110 are the Bell numbers.
(2) A(x) = 1/(1+x) * Sum_{n>=0} x^n / Product_{k=1..n} ((1+x)^2*A(x) - k*x).
(3) A(x) = 1/(1+x - x/((1+x)*A(x) - 1*x/(1+x - x/((1+x)*A(x) - 2*x/(1+x - x/((1+x)*A(x) - 3*x/(1+x - x/((1+x)*A(x) - 4*x/(1+x - x/((1+x)*A(x) -...)))))))))), a continued fraction. (End)

A286795 Triangle T(n,k) read by rows: coefficients of polynomials P_n(t) defined in Formula section.

Original entry on oeis.org

1, 1, 4, 3, 27, 31, 5, 248, 357, 117, 7, 2830, 4742, 2218, 314, 9, 38232, 71698, 42046, 9258, 690, 11, 593859, 1216251, 837639, 243987, 30057, 1329, 13, 10401712, 22877725, 17798029, 6314177, 1071809, 81963, 2331, 15, 202601898, 472751962, 404979234, 166620434, 35456432, 3857904, 196532, 3812, 17, 4342263000, 10651493718, 9869474106, 4561150162, 1149976242, 160594860, 11946360, 426852, 5904, 19
Offset: 0

Views

Author

Gheorghe Coserea, May 21 2017

Keywords

Comments

Row n>0 contains n terms.
"The series expansion of the solution counts skeleton vertex diagrams with dressed propagators and bare interactions." (see G^2v-skeleton expansion in Molinari link)

Examples

			A(x;t) = 1 + x + (4 + 3*t)*x^2 + (27 + 31*t + 5*t^2)*x^3 + ...
Triangle starts:
n\k  [0]       [1]       [2]       [3]      [4]      [5]    [6]   [7]
[0]  1;
[1]  1;
[2]  4,        3;
[3]  27,       31,       5;
[4]  248,      357,      117,      7;
[5]  2830,     4742,     2218,     314,     9;
[6]  38232,    71698,    42046,    9258,    690,     11;
[7]  593859,   1216251,  837639,   243987,  30057,   1329,  13;
[8]  10401712, 22877725, 17798029, 6314177, 1071809, 81963, 2331, 15;
[9] ...
		

Crossrefs

Programs

  • Mathematica
    max = 11; y0[x_, t_] = 1; y1[x_, t_] = 0; For[n = 1, n <= max, n++, y1[x_, t_] = ((1 + x*(1 + 2 t + x t^2) y0[x, t]^2 + t (1 - t)*x^2*y0[x, t]^3 + 2 x^2 y0[x, t] D[y0[x, t], x]))/(1 + 2 x*t) + O[x]^n // Normal; y0[x_, t_] = y1[x, t]];
    row[n_] := CoefficientList[Coefficient[y0[x, t], x, n], t];
    Table[row[n], {n, 0, max - 1}] // Flatten (* Jean-François Alcover, May 23 2017, adapted from PARI *)
  • PARI
    A286795_ser(N, t='t) = {
      my(x='x+O('x^N), y0=1, y1=0, n=1);
      while(n++,
        y1 = (1 + x*(1 + 2*t + x*t^2)*y0^2 + t*(1-t)*x^2*y0^3 + 2*x^2*y0*y0');
        y1 = y1 / (1+2*x*t); if (y1 == y0, break()); y0 = y1;); y0;
    };
    concat(apply(p->Vecrev(p), Vec(A286795_ser(11))))
    \\ test: y=A286795_ser(50); 0 == 1 - (1 + 2*x*t)*y + x*(1 + 2*t + x*t^2)*y^2 + t*(1-t)*x^2*y^3 + 2*x^2*y*y'

Formula

y(x;t) = Sum_{n>=0} P_n(t)*x^n satisfies 0 = 1 - (1 + 2*x*t)*y + x*(1 + 2*t + x*t^2)*y^2 + t*(1-t)*x^2*y^3 + 2*x^2*y*deriv(y,x), with y(0;t)=1, where P_n(t) = Sum_{k=0..n-1} T(n,k)*t^k for n>0.
A000699(n+1) = T(n,0), 1 = P_n(-1), A049464(n+1) = P_n(1).
Previous Showing 31-40 of 79 results. Next