A129126
Ninth diagonal of table A060850 counting partitions into parts of k kinds.
Original entry on oeis.org
22, 185, 810, 2580, 6765, 15525, 32305, 62337, 113265, 195910, 325193, 521235, 810654, 1228080, 1817910, 2636326, 3753600, 5256711, 7252300, 9869990, 13266099, 17627775, 23177583, 30178575, 38939875, 49822812, 63247635
Offset: 1
From A128629 we can construct the table below:
Deg # Associated sequence
------- --- -------------------
8 1 1 1 2 3 4
44 2 3 1 3 6 10
53 11 4 1 4 9 16
62 11 4 1 4 9 16
71 11 4 1 4 9 16
332 12 6 1 6 18 40
422 12 6 1 6 18 40
431 111 8 1 8 27 64
521 111 8 1 8 27 64
611 12 6 1 6 18 40
2222 4 7 1 5 15 35
3221 112 12 1 12 54 160
3311 22 9 1 9 36 100
4211 112 12 1 12 54 160
5111 13 10 1 8 30 80
22211 23 15 1 12 60 200
32111 113 20 1 16 90 320
41111 14 14 1 10 45 140
221111 24 21 1 15 90 350
311111 15 22 1 12 63 224
1111111 8 19 1 9 45 165
2111111 16 26 1 14 84 336
------- --- -- -- --- --- ----
Sums: 22 185 810 2580 ...
- Alois P. Heinz, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (9, -36, 84, -126, 126, -84, 36, -9, 1).
-
with (numtheory): b:=proc(n) option remember; local d, j; `if` (n=0, 1, add (add (d, d=divisors(j)) *b(n-j), j=1..n)/n) end: A:= proc (n) option remember; local k; `if` (n=0, x, expand (add (b(k-1) *A(n-k) *x^(k-1), k=1..n))) end: a:= n-> coeftayl (A(n+8), x=0, 9): seq(a(n), n=1..40); # Alois P. Heinz, Oct 16 2008
# second Maple program:
a:= n-> n*(n+6)*(n+3)*(n+1)*(4200+(9994+(1571+(74+n)*n)*n)*n)/40320:
seq(a(n), n=1..40); # Alois P. Heinz, Oct 17 2008
-
LinearRecurrence[{9, -36, 84, -126, 126, -84, 36, -9, 1}, {22, 185, 810, 2580, 6765, 15525, 32305, 62337, 113265}, 30] (* Jean-François Alcover, Mar 07 2021 *)
A354648
G.f. A(x) satisfies: -x^3 = Sum_{n=-oo..oo} (-1)^n * x^(n*(n+1)/2) * A(x)^(n*(n-1)/2).
Original entry on oeis.org
1, 0, 0, 1, 3, 9, 22, 54, 135, 368, 1060, 3135, 9295, 27472, 81309, 242255, 728429, 2208483, 6736523, 20634196, 63410076, 195467757, 604457802, 1875053982, 5833449236, 18195767301, 56888745654, 178238369769, 559538565187, 1759796017533, 5544359742297
Offset: 0
G.f.: A(x) = 1 + x^3 + 3*x^4 + 9*x^5 + 22*x^6 + 54*x^7 + 135*x^8 + 368*x^9 + 1060*x^10 + 3135*x^11 + 9295*x^12 + 27472*x^13 + ...
such that A = A(x) satisfies:
(1) -x^3 = ... + x^36*A^28 - x^28*A^21 + x^21*A^15 - x^15*A^10 + x^10*A^6 - x^6*A^3 + x^3*A - x + 1 - A + x*A^3 - x^3*A^6 + x^6*A^10 - x^10*A^15 + x^15*A^21 - x^21*A^28 + x^28*A^36 + ...
(2) -x^3 = (1-x) - (1-x^3)*A + x*(1-x^5)*A^3 - x^3*(1-x^7)*A^6 + x^6*(1-x^9)*A^10 - x^10*(1-x^11)*A^15 + x^15*(1-x^13)*A^21 - x^21*(1-x^15)*A^28 + ...
(3) -x^3 = (1-A) - (1-A^3)*x + A*(1-A^5)*x^3 - A^3*(1-A^7)*x^6 + A^6*(1-A^9)*x^10 - A^10*(1-A^11)*x^15 + A^15*(1-A^13)*x^21 - A^21*(1-A^15)*x^28 + ...
(4) -x^3 = (1 - x*A)*(1 - A)*(1-x) * (1 - x^2*A^2)*(1 - x*A^2)*(1 - x^2*A) * (1 - x^3*A^3)*(1 - x^2*A^3)*(1 - x^3*A^2) * (1 - x^4*A^4)*(1 - x^3*A^4)*(1 - x^4*A^3) * (1 - x^5*A^5)*(1 - x^4*A^5)*(1 - x^5*A^4) * ...
-
{a(n) = my(A=[1]); for(i=1,n, A = concat(A,0);
A[#A] = polcoeff(x^3 + sum(m=0,sqrtint(2*#A+9), (-1)^m * x^(m*(m-1)/2) * (1 - x^(2*m+1)) * Ser(A)^(m*(m+1)/2) ),#A-1) );A[n+1]}
for(n=0,30,print1(a(n),", "))
A382521
Square array A(n,k), n>=0, k>=0, read by antidiagonals downwards, where n unlabeled objects are distributed into k containers of three kinds. Containers may be left empty.
Original entry on oeis.org
1, 3, 0, 6, 3, 0, 10, 9, 3, 0, 15, 18, 15, 3, 0, 21, 30, 36, 18, 3, 0, 28, 45, 66, 55, 24, 3, 0, 36, 63, 105, 114, 81, 27, 3, 0, 45, 84, 153, 195, 189, 108, 33, 3, 0, 55, 108, 210, 298, 348, 276, 145, 36, 3, 0, 66, 135, 276, 423, 558, 552, 405, 180, 42, 3, 0, 78, 165, 351, 570, 819, 936, 858, 549, 225, 45, 3, 0
Offset: 0
Array starts:
0 : [1, 3, 6, 10, 15, 21, 28, 36, 45, 55, 66]
1 : [0, 3, 9, 18, 30, 45, 63, 84, 108, 135, 165]
2 : [0, 3, 15, 36, 66, 105, 153, 210, 276, 351, 435]
3 : [0, 3, 18, 55, 114, 195, 298, 423, 570, 739, 930]
4 : [0, 3, 24, 81, 189, 348, 558, 819, 1131, 1494, 1908]
5 : [0, 3, 27, 108, 276, 552, 936, 1428, 2028, 2736, 3552]
6 : [0, 3, 33, 145, 405, 858, 1532, 2427, 3543, 4880, 6438]
7 : [0, 3, 36, 180, 549, 1248, 2340, 3861, 5811, 8190, 10998]
8 : [0, 3, 42, 225, 741, 1785, 3510, 6000, 9300, 13410, 18330]
9 : [0, 3, 45, 271, 957, 2451, 5051, 8967, 14307, 21126, 29424]
10 : [0, 3, 51, 324, 1227, 3312, 7137, 13125, 21552, 32553, 46194]
...
Alternating antidiagonal sums give
A107635.
-
b:= proc(n, i) option remember; expand(`if`(n=0, 1, `if`(i<1, 0,
add(x^j*b(n-i*j, min(n-i*j, i-1))*(j+2)*(j+1)/2, j=0..n/i))))
end:
A:= (n, k)-> coeff(b(n+k$2), x, k):
seq(seq(A(n, d-n), n=0..d), d=0..11); # Alois P. Heinz, Mar 31 2025
-
from sympy import binomial
from sympy.utilities.iterables import partitions
def a_row(n, length=11) :
if n == 0 : return [ binomial( k + 2, 2) for k in range( length) ]
t = list( [0] * length)
for p in partitions( n):
fact = 1
s = 0
for k in p :
s += p[k]
fact *= binomial( 2 + p[k], 2)
if s > 0 :
t[s] += fact
a = list( [0] * length)
for i in range( 1, length):
for j in range( i, 0, -1):
a[i] += t[j] * binomial( i - j + 2, 2)
return a
for n in range(11): print(a_row(n))
A277992
b(n, 2) where b(n, m) is defined by expansion of ((Product_{k>=1} (1 - x^(prime(n)*k))/(1 - x^k)^prime(n)) - 1)/prime(n) in powers of x.
Original entry on oeis.org
2, 3, 4, 5, 7, 8, 10, 11, 13, 16, 17, 20, 22, 23, 25, 28, 31, 32, 35, 37, 38, 41, 43, 46, 50, 52, 53, 55, 56, 58, 65, 67, 70, 71, 76, 77, 80, 83, 85, 88, 91, 92, 97, 98, 100, 101, 107, 113, 115, 116, 118, 121, 122, 127, 130, 133, 136, 137, 140, 142, 143, 148, 155, 157
Offset: 1
a(1) = b(1, 2) = A014968(2) = 2.
a(2) = b(2, 2) = A277968(2) = c(2, 2) = A000716(2)/3 = 3.
a(3) = b(3, 2) = A277974(2) = c(3, 2) = A023004(2)/5 = 4.
a(4) = b(4, 2) = A160549(2) = c(4, 2) = A023006(2)/7 = 5.
a(5) = b(5, 2) = A277912(2) = c(5, 2) = A023010(2)/11 = 7.
A347187
Triangle read by rows T(n,k), (n,k>=0), with row/diagonal sums to overpartitions/partitions isomorphic to binomial coefficient sums to 2^n/F(n) (Fibonacci numbers) on Pascal's triangle.
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 3, 6, 3, 1, 1, 3, 8, 8, 3, 1, 1, 3, 9, 14, 9, 3, 1, 1, 3, 9, 19, 19, 9, 3, 1, 1, 3, 9, 21, 32, 21, 9, 3, 1, 1, 3, 9, 22, 42, 42, 22, 9, 3, 1, 1, 3, 9, 22, 48, 66, 48, 22, 9, 3, 1, 1, 3, 9, 22, 50, 87, 87, 50, 22, 9, 3, 1
Offset: 0
Triangle begins:
1;
1, 1;
1, 2, 1;
1, 3, 3, 1;
1, 3, 6, 3, 1;
1, 3, 8, 8, 3, 1;
1, 3, 9, 14, 9, 3, 1;
1, 3, 9, 19, 19, 9, 3, 1;
1, 3, 9, 21, 32, 21, 9, 3, 1;
1, 3, 9, 22, 42, 42, 22, 9, 3, 1;
1, 3, 9, 22, 48, 66, 48, 22, 9, 3, 1;
1, 3, 9, 22, 50, 87, 87, 50, 22, 9, 3, 1;
- Richard Joseph Boland, Quadratic Polynomial Number Theorem Part 7 - Overpartitions, Moreoverpartitions and More.
- R. da Silva and P. Sakai, New partition function recurrences, J. of Int. Seq. 23 (2020), Article 20.11.8, 16 pp.
- H. Leung, On a generalization of the pentagonal number theorem, Kyungpook Math. J. 58 (2018), 599-613.
- Mircea Mirca, Overpartitions and functions from multiplicative number theory, UPB Scientific Bulletin, Series A: Applied Mathematics and Physics. 83. 97-106.
-
(* via a,b mod restricted partition functions *)
lim = 20; P[a_,b_,n_] := P[a,b,n] = (F[k_] := ((a+b)k^2 + (a-b)k)/2;
P[a, b, 0] = 1; If[n == 0, 1, Sum[(-1)^(k+1)
(If[n-F[k] < 0, 0, P[a,b,n-F[k]]] +
If[n-F[-k] < 0, 0, P[a,b,n-F[-k]]]), {k,1,n}]]);
T[n_,k_] := T[n,k] =
(If[k < 0 || k > n, 0, P[n+1, n+2, 2 Binomial[n+1, 2]+k]]);
MatrixForm[Table[Table[T[n, k], {k,0,n}], {n,0,lim}]]
(* via direct recursion *)
lim = 20;
T[n_,k_]:=T[n,k]=(T[0,0]=1;
If[n==0 && k==0, 1, Sum[(-1)^(j+1)(If[k-Binomial[j, 2] < 0, 0, T[n-j^2, k-Binomial[j, 2]]] + If[k-Binomial[j+1, 2] < 0, 0, T[n-j^2, k-Binomial[j+1, 2]]]), {j, 1, Floor[n^(1/2)]}]]);
MatrixForm[Table[Table[T[n,k],{k,0,n}],{n,0,lim}]]
(* via a recursion operating on the triangle row sequences *)
lim=20;S[0]={1};
Table[S[n]=Sum[(-1)^(j+1)(PadRight[PadLeft[S[n-j^2],n+1-Binomial[j,2]],n+1] + PadRight[PadLeft[S[n-j^2],n+1-Binomial[j+1,2]],n+1]),{j,1,Floor[n^(1/2)]}],{n,1,lim}];
MatrixForm[Table[S[n],{n,0,lim}]]
(* p(a,b,n) (and p(b,a,n)) via summing select T(n,k) from the triangle held in memory. *)
memlim = 300;
S[0] = {1}; Table[
S[n] = Sum[(-1)^(j + 1) (PadRight[
PadLeft[S[n - j^2], n + 1 - Binomial[j, 2]], n + 1] +
PadRight[PadLeft[S[n - j^2], n + 1 - Binomial[j + 1, 2]],
n + 1]), {j, 1, Floor[n^(1/2)]}], {n, 1, memlim}];
y[a_, b_, x_, n_] := -((b - a)/a) x + n/a;
p[a_, b_, n_] := (x = 0; P = 0;
If[n == 0, P = 1,
While[x <= y[a, b, x, n],
If[y[a, b, x, n] == Floor[y[a, b, x, n]],
P += If[x > y[a, b, x, n], 0, S[y[a, b, x, n]][[x + 1]]]];
x += 1]]; P)
-
T(n,k) = if (!n && !k, 1, sum(j=1, sqrtint(n), (-1)^(j+1)*(T(n-j^2, k - binomial(j,2)) + T(n-j^2, k - binomial(j+1,2))))); \\ Michel Marcus, Aug 26 2021
Comments