cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 87 results. Next

A091605 Column 2 of triangle A091602.

Original entry on oeis.org

1, 0, 2, 2, 3, 4, 7, 8, 12, 15, 21, 26, 35, 43, 57, 70, 89, 109, 138, 167, 208, 251, 309, 371, 452, 539, 652, 775, 929, 1099, 1311, 1543, 1829, 2146, 2529, 2957, 3469, 4040, 4721, 5481, 6377, 7381, 8559, 9875, 11412, 13133, 15128, 17364, 19945, 22833
Offset: 2

Views

Author

Christian G. Bower, Jan 23 2004

Keywords

Examples

			a(7) counts these partitions:  511, 331, 322, 3211. - _Clark Kimberling_, Mar 10 2014
		

Programs

  • Mathematica
    d[n_] := Select[IntegerPartitions[n], Max[Length /@ Split@#] == 2 &];
    t = Table[d[n], {n, 12}]  (* shows partitions *)
    u = Table[Length[d[n]], {n, 2, 30}] (* counts partitions *)
    (* Clark Kimberling, Mar 10 2014 *)

Formula

a(n) = A000726(n) - A000009(n).

A266649 Expansion of Product_{k>=1} 1 - x^(3*k)/(1-x^k).

Original entry on oeis.org

1, 0, 0, -1, -1, -1, -2, -1, -2, -1, -1, 1, -1, 3, 2, 5, 4, 8, 7, 11, 8, 12, 11, 13, 10, 9, 9, 7, 3, -2, -5, -13, -16, -25, -28, -48, -44, -66, -60, -82, -82, -104, -95, -120, -103, -131, -107, -133, -98, -124, -85, -94, -42, -51, 9, 7, 83, 100, 181, 208, 298
Offset: 0

Views

Author

Vaclav Kotesovec, Jan 02 2016

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 100; CoefficientList[Series[Product[1-x^(3*k)/(1-x^k), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

G.f.: Product_{k>=1} (1 - x^k - x^(3*k)) / (1 - x^k).

A275820 Expansion of Product_{k>=1} (1 + x^(2*k) + x^(3*k)).

Original entry on oeis.org

1, 0, 1, 1, 1, 0, 3, 1, 3, 3, 3, 2, 7, 3, 8, 7, 10, 7, 16, 8, 17, 17, 21, 17, 35, 22, 37, 36, 46, 37, 69, 46, 74, 71, 91, 81, 128, 96, 144, 139, 173, 154, 236, 185, 263, 257, 314, 286, 417, 345, 470, 462, 557, 517, 719, 617, 815, 802, 960, 904, 1211, 1068
Offset: 0

Views

Author

Vaclav Kotesovec, Nov 15 2016

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 100; CoefficientList[Series[Product[1+x^(2*k)+x^(3*k), {k, 1, nmax}], {x, 0, nmax}], x]
    nmax = 100; p = ConstantArray[0, nmax + 1]; p[[1]] = 1; p[[3]] = 1; p[[4]] = 1; Do[Do[p[[j+1]] = p[[j+1]] + If[j < 2*k, 0, p[[j - 2*k + 1]]] + If[j < 3*k, 0, p[[j - 3*k + 1]]], {j, nmax, k, -1}];, {k, 2, nmax}]; p (* Vaclav Kotesovec, May 10 2018 *)

Formula

a(n) ~ c^(1/4) * exp(2*sqrt(c*n)) / (2*sqrt(3*Pi)*n^(3/4)), where c = Integral_{0..infinity} log(1 + exp(-2*x) + exp(-3*x)) dx = 0.60248650631158778882474716370201988195290074160793967143564...

A293138 E.g.f.: Product_{m>0} (1+x^m+x^(2*m)/2!).

Original entry on oeis.org

1, 1, 3, 12, 72, 480, 3780, 35280, 372960, 4263840, 54432000, 758419200, 11436163200, 185253868800, 3214699488000, 59172265152000, 1163830187520000, 24097823253504000, 525794940582912000, 12073276215576576000, 290883846352619520000, 7318777466097377280000
Offset: 0

Views

Author

Seiichi Manyama, Oct 01 2017

Keywords

Examples

			Let's consider the partitions of n where no positive integer appears more than twice. (See A000726)
For n = 5,
    partition      |                         |
--------------------------------------------------------------------
     5             -> one 5                  -> 1/(1!)       (= 1  )
   = 4 + 1         -> one 4 and one 1        -> 1/(1!*1!)    (= 1  )
   = 3 + 2         -> one 3 and one 2        -> 1/(1!*1!)    (= 1  )
   = 3 + 1 + 1     -> one 3 and two 1        -> 1/(1!*2!)    (= 1/2)
   = 2 + 2 + 1     -> two 2 and one 1        -> 1/(2!*1!)    (= 1/2)
--------------------------------------------------------------------
                                                sum             4
So a(5) = 5! * 4 = 480.
For n = 6,
    partition      |                         |
--------------------------------------------------------------------
     6             -> one 6                  -> 1/(1!)       (= 1  )
   = 5 + 1         -> one 5 and one 1        -> 1/(1!*1!)    (= 1  )
   = 4 + 2         -> one 4 and one 2        -> 1/(1!*1!)    (= 1  )
   = 4 + 1 + 1     -> one 4 and two 1        -> 1/(1!*2!)    (= 1/2)
   = 3 + 3         -> two 3                  -> 1/(2!)       (= 1/2)
   = 3 + 2 + 1     -> one 3, one 2 and one 1 -> 1/(1!*1!*1!) (= 1  )
   = 2 + 2 + 1 + 1 -> two 2 and two 1        -> 1/(2!*2!)    (= 1/4)
--------------------------------------------------------------------
                                                sum            21/4
So a(6) = 6! * 21/4 = 3780.
		

Crossrefs

Column k=2 of A293135.

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          add(b(n-i*j, i-1)/j!, j=0..min(2, n/i))))
        end:
    a:= n-> n!*b(n$2):
    seq(a(n), n=0..23);  # Alois P. Heinz, Oct 02 2017
  • Mathematica
    b[n_, i_] := b[n, i] = If[n == 0, 1, If[i < 1, 0, Sum[b[n - i j, i - 1]/j!, {j, 0, Min[2, n/i]}]]];
    a[n_] := n! b[n, n];
    a /@ Range[0, 23] (* Jean-François Alcover, Nov 01 2020, after Alois P. Heinz *)

Formula

a(n) ~ c^(1/4) * exp(2*sqrt(c*n) - n) * n^(n+1/2) / (sqrt(5) * n^(3/4)), where c = -polylog(2, -1/2 - I/2) - polylog(2, -1/2 + I/2) = 0.9669456127221570300837545... Equivalently, c = -Sum_{k>=1} (-1)^k * cos(Pi*k/4) / (k^2 * 2^(k/2-1)). - Vaclav Kotesovec, Oct 01 2017

A293204 G.f.: Product_{m>0} (1+x^m+2!*x^(2*m)).

Original entry on oeis.org

1, 1, 3, 2, 6, 7, 12, 13, 22, 26, 42, 46, 73, 80, 116, 139, 194, 226, 306, 358, 482, 558, 735, 856, 1108, 1300, 1657, 1926, 2426, 2834, 3530, 4110, 5082, 5898, 7234, 8409, 10216, 11860, 14304, 16568, 19891, 22990, 27470, 31670, 37630, 43382, 51274, 58982, 69450
Offset: 0

Views

Author

Seiichi Manyama, Oct 02 2017

Keywords

Examples

			Let's consider the partitions of n where no positive integer appears more than twice. (See A000726)
For n = 5,
    partition      |                         |
--------------------------------------------------------------
     5             -> one 5                  -> 1!       (= 1)
   = 4 + 1         -> one 4 and one 1        -> 1!*1!    (= 1)
   = 3 + 2         -> one 3 and one 2        -> 1!*1!    (= 1)
   = 3 + 1 + 1     -> one 3 and two 1        -> 1!*2!    (= 2)
   = 2 + 2 + 1     -> two 2 and one 1        -> 2!*1!    (= 2)
--------------------------------------------------------------
                                                a(5)      = 7.
For n = 6,
    partition      |                         |
--------------------------------------------------------------
     6             -> one 6                  -> 1!       (= 1)
   = 5 + 1         -> one 5 and one 1        -> 1!*1!    (= 1)
   = 4 + 2         -> one 4 and one 2        -> 1!*1!    (= 1)
   = 4 + 1 + 1     -> one 4 and two 1        -> 1!*2!    (= 2)
   = 3 + 3         -> two 3                  -> 2!       (= 2)
   = 3 + 2 + 1     -> one 3, one 2 and one 1 -> 1!*1!*1! (= 1)
   = 2 + 2 + 1 + 1 -> two 2 and two 1        -> 2!*2!    (= 4)
--------------------------------------------------------------
                                                a(6)      = 12.
		

Crossrefs

Column k=2 of A293202.
Cf. A293072.

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          add(b(n-i*j, i-1)*j!, j=0..min(2, n/i))))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..50);  # Alois P. Heinz, Oct 02 2017
  • Mathematica
    nmax = 100; CoefficientList[Series[Product[1 + x^k + 2*x^(2*k), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Oct 02 2017 *)

Formula

a(n) ~ c^(1/4) * exp(2*sqrt(c*n)) / (4 * sqrt(Pi) * n^(3/4)), where c = Pi^2/3 - arctan(sqrt(7))^2 + log(2)^2/4 + polylog(2, -1/4 - I*sqrt(7)/4) + polylog(2, -1/4 + I*sqrt(7)/4) = 1.323865936864425754643630663383779192757247984691212163137... - Vaclav Kotesovec, Oct 02 2017
Equivalently, c = -polylog(2, -1/2 + I*sqrt(7)/2) - polylog(2, -1/2 - I*sqrt(7)/2). - Vaclav Kotesovec, Oct 05 2017

A342532 Number of even-length compositions of n with alternating parts distinct.

Original entry on oeis.org

1, 0, 1, 2, 3, 4, 9, 14, 28, 44, 83, 136, 250, 424, 757, 1310, 2313, 4018, 7081, 12314, 21650, 37786, 66264, 115802, 202950, 354858, 621525, 1087252, 1903668, 3330882, 5831192, 10204250, 17862232, 31260222, 54716913, 95762576, 167614445, 293356422, 513456686
Offset: 0

Views

Author

Gus Wiseman, Mar 28 2021

Keywords

Comments

These are finite even-length sequences q of positive integers summing to n such that q(i) != q(i+2) for all possible i.

Examples

			The a(2) = 1 through a(7) = 14 compositions:
  (1,1)  (1,2)  (1,3)  (1,4)  (1,5)      (1,6)
         (2,1)  (2,2)  (2,3)  (2,4)      (2,5)
                (3,1)  (3,2)  (3,3)      (3,4)
                       (4,1)  (4,2)      (4,3)
                              (5,1)      (5,2)
                              (1,1,2,2)  (6,1)
                              (1,2,2,1)  (1,1,2,3)
                              (2,1,1,2)  (1,1,3,2)
                              (2,2,1,1)  (1,2,3,1)
                                         (1,3,2,1)
                                         (2,1,1,3)
                                         (2,3,1,1)
                                         (3,1,1,2)
                                         (3,2,1,1)
		

Crossrefs

The strictly decreasing version appears to be A064428 (odd-length: A001522).
The equal version is A065608 (A342527 with odds).
The weakly decreasing version is A114921 (A342528 with odds).
Including odds gives A224958.
A000726 counts partitions with alternating parts unequal.
A325545 counts compositions with distinct first differences.
A342529 counts compositions with distinct first quotients.

Programs

  • Mathematica
    qdq[q_]:=And@@Table[q[[i]]!=q[[i+2]],{i,Length[q]-2}];
    Table[Length[Select[Join@@Permutations/@Select[IntegerPartitions[n],EvenQ[Length[#]]&],qdq]],{n,0,15}]
  • PARI
    \\ here gf gives A106351 as g.f.
    gf(n, y)={1/(1 - sum(k=1, n, (-1)^(k+1)*x^k*y^k/(1-x^k) + O(x*x^n)))}
    seq(n)={my(p=gf(n,y)); Vec(sum(k=0, n\2, polcoef(p,k,y)^2))} \\ Andrew Howroyd, Apr 16 2021

Formula

G.f.: 1 + Sum_{k>=1} B_k(x)^2 where B_k(x) is the g.f. of column k of A106351. - Andrew Howroyd, Apr 16 2021

Extensions

Terms a(24) and beyond from Andrew Howroyd, Apr 16 2021

A285927 Expansion of (Product_{k>0} (1 - x^(3*k)) / (1 - x^k))^3 in powers of x.

Original entry on oeis.org

1, 3, 9, 19, 42, 81, 155, 276, 486, 821, 1368, 2214, 3541, 5544, 8586, 13082, 19740, 29403, 43414, 63423, 91935, 132075, 188418, 266733, 375232, 524331, 728514, 1006216, 1382604, 1889739, 2570719, 3480420, 4691682, 6297102, 8418252, 11209347, 14870970
Offset: 0

Views

Author

Seiichi Manyama, Apr 28 2017

Keywords

Crossrefs

(Product_{k>0} (1 - x^(m*k)) / (1 - x^k))^m: A022567 (m=2), this sequence (m=3), A093160 (m=4), A285928 (m=5).

Programs

  • Mathematica
    nmax = 40; CoefficientList[Series[Product[((1 - x^(3*k)) / (1 - x^k))^3, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Apr 30 2017 *)

Formula

a(0) = 1, a(n) = (3/n)*Sum_{k=1..n} A046913(k)*a(n-k) for n > 0.
a(n) ~ exp(2*Pi*sqrt(n/3)) / (2 * 3^(7/4) * n^(3/4)). - Vaclav Kotesovec, Apr 30 2017

A327717 Expansion of Product_{k>=1} (1 + x^k/(1 + x^(2*k))).

Original entry on oeis.org

1, 1, 1, 1, 2, 3, 2, 3, 5, 6, 6, 7, 10, 12, 12, 15, 20, 23, 24, 28, 36, 42, 44, 51, 64, 73, 78, 89, 108, 123, 132, 150, 179, 202, 218, 246, 288, 324, 350, 393, 456, 509, 552, 616, 706, 786, 852, 948, 1078, 1195, 1297, 1436, 1620, 1791, 1942, 2145, 2406, 2650, 2874, 3163, 3528
Offset: 0

Views

Author

Seiichi Manyama, Sep 23 2019

Keywords

Crossrefs

Convolution inverse of A307757.

Programs

  • Mathematica
    nmax = 100; CoefficientList[Series[Product[1 + x^k/(1 + x^(2*k)), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Sep 23 2019 *)
    nmax = 100; CoefficientList[Series[Product[(1 + x^k + x^(2*k)) * (1 - x^(4*k - 2)), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Sep 23 2019 *)
  • PARI
    N=66; x='x+O('x^N); Vec(prod(k=1, N, 1+x^k/(1+x^(2*k))))

Formula

a(n) ~ 5^(1/4) * exp(sqrt(5*n/2)*Pi/3) / (2^(5/4)*3*n^(3/4)). - Vaclav Kotesovec, Sep 23 2019

A328547 Number of 3-regular bipartitions of n.

Original entry on oeis.org

1, 2, 5, 8, 16, 26, 44, 68, 108, 162, 245, 356, 521, 740, 1053, 1468, 2045, 2804, 3836, 5184, 6988, 9326, 12409, 16376, 21546, 28154, 36674, 47492, 61317, 78764, 100880, 128628, 163553, 207134, 261630, 329288, 413395, 517316, 645803, 803844, 998282
Offset: 0

Views

Author

N. J. A. Sloane, Oct 19 2019

Keywords

References

  • Kathiravan, T., and S. N. Fathima. "On L-regular bipartitions modulo L." The Ramanujan Journal 44.3 (2017): 549-558.

Crossrefs

Number of r-regular bipartitions of n for r = 2,3,4,5,6: A022567, A328547, A001936, A263002, A328548.
Cf. A000726.

Programs

  • Maple
    f:=(k,M) -> mul(1-q^(k*j),j=1..M);
    LRBP := (L,M) -> (f(L,M)/f(1,M))^2;
    S := L -> seriestolist(series(LRBP(L,80),q,60));
    S(3);
  • Mathematica
    nmax = 40; CoefficientList[Series[Product[1 + x^j + x^(2*j), {j, 1, nmax}]^2, {x, 0, nmax}], x] (* Vaclav Kotesovec, Oct 08 2024 *)

Formula

a(n) ~ exp(Pi*sqrt(8*n)/3) / (2^(3/4) * 3^(3/2) * n^(3/4)). - Vaclav Kotesovec, Oct 08 2024

A353502 Numbers with all prime indices and exponents > 2.

Original entry on oeis.org

1, 125, 343, 625, 1331, 2197, 2401, 3125, 4913, 6859, 12167, 14641, 15625, 16807, 24389, 28561, 29791, 42875, 50653, 68921, 78125, 79507, 83521, 103823, 117649, 130321, 148877, 161051, 166375, 205379, 214375, 226981, 274625, 279841, 300125, 300763, 357911
Offset: 1

Views

Author

Gus Wiseman, May 16 2022

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The initial terms together with their prime indices:
       1: {}
     125: {3,3,3}
     343: {4,4,4}
     625: {3,3,3,3}
    1331: {5,5,5}
    2197: {6,6,6}
    2401: {4,4,4,4}
    3125: {3,3,3,3,3}
    4913: {7,7,7}
    6859: {8,8,8}
   12167: {9,9,9}
   14641: {5,5,5,5}
   15625: {3,3,3,3,3,3}
   16807: {4,4,4,4,4}
   24389: {10,10,10}
   28561: {6,6,6,6}
   29791: {11,11,11}
   42875: {3,3,3,4,4,4}
		

Crossrefs

The version for only parts is A007310, counted by A008483.
The version for <= 2 instead of > 2 is A018256, # of compositions A137200.
The version for only multiplicities is A036966, counted by A100405.
The version for indices and exponents prime (instead of > 2) is:
- listed by A346068
- counted by A351982
- only exponents: A056166, counted by A055923
- only parts: A076610, counted by A000607
The version for > 1 instead of > 2 is A062739, counted by A339222.
The version for compositions is counted by A353428, see A078012, A353400.
The partitions with these Heinz numbers are counted by A353501.
A000726 counts partitions with multiplicities <= 2, compositions A128695.
A001222 counts prime factors with multiplicity, distinct A001221.
A004250 counts partitions with some part > 2, compositions A008466.
A056239 adds up prime indices, row sums of A112798 and A296150.
A124010 gives prime signature, sorted A118914.
A295341 counts partitions with some multiplicity > 2, compositions A335464.

Programs

  • Mathematica
    Select[Range[10000],#==1||!MemberQ[FactorInteger[#],{?(#<5&),}|{,?(#<3&)}]&]

Formula

Sum_{n>=1} 1/a(n) = Product_{p prime > 3} (1 + 1/(p^2*(p-1))) = (72/95)*A065483 = 1.0154153584... . - Amiram Eldar, May 28 2022
Previous Showing 41-50 of 87 results. Next