cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 30 results. Next

A132062 Sheffer triangle (1,1-sqrt(1-2*x)). Extended Bessel triangle A001497.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 3, 3, 1, 0, 15, 15, 6, 1, 0, 105, 105, 45, 10, 1, 0, 945, 945, 420, 105, 15, 1, 0, 10395, 10395, 4725, 1260, 210, 21, 1, 0, 135135, 135135, 62370, 17325, 3150, 378, 28, 1, 0, 2027025, 2027025, 945945, 270270, 51975, 6930, 630, 36, 1, 0
Offset: 0

Views

Author

Wolfdieter Lang Sep 14 2007

Keywords

Comments

This is a Jabotinsky type exponential convolution triangle related to A001147 (double factorials). For Jabotinsky type triangles See the D. E. Knuth reference given under A039692.
The subtriangle (n>=m>=1) is A001497(n,m) (Bessel).
For the combinatorial interpretation in terms of unordered forests of increasing plane trees see the W. Lang comment and example under A001497.
This is a special type of Sheffer triangle. See the S. Roman reference given under A048854 (the notation here differs).
This triangle (or the A001497 subtriangle) appears as generalized Stirling numbers of the second kind, S2p(-1,n,m):=S2(-k;m,m)*(-1)^(n-m) for k=1, eqs. (27)-(29) of the W. Lang reference.
Also the Bell transform of the double factorial of odd numbers A001147. For the Bell transform of the double factorial of even numbers A000165 see A039683. For the definition of the Bell transform see A264428. - Peter Luschny, Dec 20 2015

Examples

			[1]
[0,      1]
[0,      1,      1]
[0,      3,      3,     1]
[0,     15,     15,     6,     1]
[0,    105,    105,    45,    10,    1]
[0,    945,    945,   420,   105,   15,   1]
[0,  10395,  10395,  4725,  1260,  210,  21,  1]
[0, 135135, 135135, 62370, 17325, 3150, 378, 28, 1]
		

References

  • Toufik Mansour, Matthias Schork and Mark Shattuck, On the Stirling numbers associated with the meromorphic Weyl algebra, Applied Mathematics Letters, Volume 25, Issue 11, November 2012, Pages 1767-1771. - From N. J. A. Sloane, Sep 15 2012
  • Steven Roman, The Umbral Calculus, Pure and Applied Mathematics, 111, Academic Press, 1984. (p. 78) [Emanuele Munarini, Oct 10 2017]

Crossrefs

Columns m=1: A001147.
Row sums give [1, A001515]. Alternating row sums give [1, -A000806].
Cf. A122850. - R. J. Mathar, Mar 20 2009

Programs

  • Maple
    # The function BellMatrix is defined in A264428.
    BellMatrix(n -> doublefactorial(2*n-1), 9); # Peter Luschny, Jan 27 2016
    # Alternative:
    egf := exp(y*(1 - sqrt(1 - 2*x))): serx := series(egf, x, 12):
    coefx := n -> n!*coeff(serx, x, n): row := n -> seq(coeff(coefx(n), y, k), k = 0..n): for n from 0 to 8 do row(n) od;  # Peter Luschny, Apr 25 2024
  • Mathematica
    Table[If[k <= n, Binomial[2n-2k,n-k] Binomial[2n-k-1,k-1] (n-k)!/2^(n-k), 0], {n, 0, 6}, {k, 0, n}] // Flatten (* Emanuele Munarini, Oct 10 2017 *)
    BellMatrix[f_Function, len_] := With[{t = Array[f, len, 0]}, Table[BellY[n, k, t], {n, 0, len - 1}, {k, 0, len - 1}]];
    rows = 10;
    M = BellMatrix[(2#-1)!!&, rows];
    Table[M[[n, k]], {n, 1, rows}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jun 23 2018, after Peter Luschny *)
  • Sage
    # uses[bell_transform from A264428]
    def A132062_row(n):
        a = sloane.A001147
        dblfact = a.list(n)
        return bell_transform(n, dblfact)
    [A132062_row(n) for n in (0..9)] # Peter Luschny, Dec 20 2015

Formula

a(n,m)=0 if n
E.g.f. m-th column ((x*f2p(1;x))^m)/m!, m>=0. with f2p(1;x):=1-sqrt(1-2*x)= x*c(x/2) with the o.g.f.of A000108 (Catalan).
From Emanuele Munarini, Oct 10 2017: (Start)
a(n,k) = binomial(2*n-2*k,n-k)*binomial(2*n-k-1,k-1)*(n-k)!/2^(n-k).
The row polynomials p_n(x) (studied by Carlitz) satisfy the recurrence: p_{n+2}(x) - (2*n+1)*p_{n+1}(x) - x^2*p_n(x) = 0. (End)
T(n, k) = n! [y^k] [x^n] exp(y*(1 - sqrt(1 - 2*x))). - Peter Luschny, Apr 25 2024

A293157 Triangle read by rows: T(n,k) = number of linear chord diagrams with n chords such that every chord has length at least k (1 <= k <= n).

Original entry on oeis.org

1, 3, 1, 15, 5, 1, 105, 36, 10, 1, 945, 329, 99, 20, 1, 10395, 3655, 1146, 292, 40, 1, 135135, 47844, 15422, 4317, 876, 80, 1, 2027025, 721315, 237135, 69862, 16924, 2628, 160, 1, 34459425, 12310199, 4106680, 1251584, 332507, 67404, 7884, 320, 1, 654729075, 234615096, 79154927, 24728326, 6944594, 1627252, 269616, 23652, 640, 1
Offset: 1

Author

N. J. A. Sloane, Oct 10 2017

Keywords

Comments

There is a surprising change in notation in Sullivan (2016) between Definition 1 and Table 1.
The first 11 columns are given in the reference.

Examples

			Triangle begins:
      1;
      3,    1;
     15,    5,    1;
    105,   36,   10,    1;
    945,  329,   99,   20,    1;
  10395, 3655, 1146,  292,   40,    1;
  ...
		

Extensions

More terms from Alois P. Heinz, Oct 17 2017

A190823 Number of permutations of 2 copies of 1..n introduced in order 1..n with no element equal to another within a distance of 2.

Original entry on oeis.org

1, 0, 0, 1, 10, 99, 1146, 15422, 237135, 4106680, 79154927, 1681383864, 39034539488, 983466451011, 26728184505750, 779476074425297, 24281301468714902, 804688068731837874, 28269541494090294129, 1049450257149017422000, 41050171013933837206545
Offset: 0

Author

R. H. Hardin, May 21 2011

Keywords

Comments

From Gus Wiseman, Feb 27 2019: (Start)
Also the number of 2-uniform set partitions of {1..2n} such that no block has its two vertices differing by less than 3. For example, the a(4) = 10 set partitions are:
{{1,4}, {2,6}, {3,7}, {5,8}}
{{1,4}, {2,7}, {3,6}, {5,8}}
{{1,5}, {2,6}, {3,7}, {4,8}}
{{1,5}, {2,6}, {3,8}, {4,7}}
{{1,5}, {2,7}, {3,6}, {4,8}}
{{1,5}, {2,8}, {3,6}, {4,7}}
{{1,6}, {2,5}, {3,7}, {4,8}}
{{1,6}, {2,5}, {3,8}, {4,7}}
{{1,7}, {2,5}, {3,6}, {4,8}}
{{1,8}, {2,5}, {3,6}, {4,7}}
(End)

Examples

			All solutions for n=4 (read downwards):
  1    1    1    1    1    1    1    1    1    1
  2    2    2    2    2    2    2    2    2    2
  3    3    3    3    3    3    3    3    3    3
  4    4    4    4    1    4    4    1    4    4
  1    1    2    1    4    2    1    4    2    2
  3    3    1    2    2    3    2    3    1    3
  2    4    4    4    3    4    3    2    3    1
  4    2    3    3    4    1    4    4    4    4
		

Crossrefs

Distance of 1 instead of 2 gives |A000806|.
Column k=3 of A293157.
Cf. A000699, A001147 (2-uniform set partitions), A003436, A005493, A011968, A170941, A278990 (distance 2+ version), A306386 (cyclical version).

Programs

  • Magma
    I:=[1,0,0,1,10,99]; [n le 5 select I[n] else 2*n*Self(n-1) -2*(3*n-8)*Self(n-2) +2*(3*n-11)*Self(n-3) -2*(n-5)*Self(n-4) -Self(n-5): n in [1..40]]; // G. C. Greubel, Dec 03 2023
    
  • Mathematica
    a[0]=1; a[1]=0; a[2]=0; a[3]=1; a[4]=10; a[5]=99; a[n_] := a[n] = (2*n+2) a[n-1] - (6*n-10) a[n-2] + (6*n-16) a[n-3] - (2*n-8) a[n-4] - a[n-5]; Array[a, 20, 0] (* based on Sullivan's formula, Giovanni Resta, Mar 20 2017 *)
    dtui[{}]:={{}};dtui[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@dtui[Complement[set,s]]]/@Table[{i,j},{j,Select[set,#>i+2&]}];
    Table[Length[dtui[Range[n]]],{n,0,12,2}] (* Gus Wiseman, Feb 27 2019 *)
  • SageMath
    @CachedFunction
    def a(n): # a = A190823
        if (n<6): return (1,0,0,1,10,99)[n]
        else: return 2*(n+1)*a(n-1) - 2*(3*n-5)*a(n-2) + 2*(3*n-8)*a(n-3) - 2*(n-4)*a(n-4) - a(n-5)
    [a(n) for n in range(41)] # G. C. Greubel, Dec 03 2023

Formula

a(n) = 2*(n+1)*a(n-1) - 2*(3*n-5)*a(n-2) + 2*(3*n-8)*a(n-3) - 2*(n-4)*a(n-4) - a(n-5) (proved). - Everett Sullivan, Mar 16 2017
a(n) ~ 2^(n+1/2) * n^n / exp(n+2), based on Sullivan's formula. - Vaclav Kotesovec, Mar 21 2017

Extensions

a(16)-a(20) (using Everett Sullivan's formula) from Giovanni Resta, Mar 20 2017
a(0)=1 prepended by Alois P. Heinz, Oct 17 2017

A265192 T(n,k)=Number of nXk arrays containing k copies of 0..n-1 with no equal horizontal or antidiagonal neighbors and new values introduced sequentially from 0.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 0, 5, 1, 0, 1, 17, 36, 1, 0, 0, 42, 774, 329, 1, 0, 1, 155, 20592, 76035, 3655, 1, 0, 0, 511, 583806, 20957398, 10866362, 47844, 1, 0, 1, 2023, 17355854, 6394366422, 38833756515, 2130866037, 721315, 1, 0, 0, 7760, 531710144
Offset: 1

Author

R. H. Hardin, Dec 04 2015

Keywords

Comments

Table starts
.1........0............0...............0...............0..................0
.1........1............0...............1...............0..................1
.1........5...........17..............42.............155................511
.1.......36..........774...........20592..........583806...........17355854
.1......329........76035........20957398......6394366422......2057050979371
.1.....3655.....10866362.....38833756515.157027988934320.683255971286971494
.1....47844...2130866037.117650546564305
.1...721315.551607137250
.1.12310199

Examples

			Some solutions for n=4 k=4
..0..1..2..3....0..1..0..2....0..1..2..3....0..1..2..3....0..1..2..1
..2..3..0..2....3..2..1..3....0..3..1..0....3..0..2..1....2..0..3..0
..1..3..0..1....0..3..2..1....2..3..1..2....2..0..3..2....3..1..2..3
..1..3..0..2....0..1..3..2....2..3..1..0....1..0..3..1....2..0..1..3
		

Crossrefs

Column 2 is A000806.

A232690 E.g.f. satisfies: A(x) = exp( 1/A(x) * Integral A(x)^3 dx ).

Original entry on oeis.org

1, 1, 2, 7, 33, 202, 1495, 13107, 132062, 1508629, 19227687, 270818542, 4173948097, 69906444393, 1263811926338, 24534217063999, 508951297964193, 11236656534791578, 263054502440239639, 6508910392250017611, 169727899004807970782, 4652123984505282141277, 133711980572082349859559
Offset: 0

Author

Paul D. Hanna, Dec 06 2013

Keywords

Comments

Note that G(x) = exp(1/G(x) * Integral G(x)^2 dx) has negative coefficients.
Compare e.g.f. to: B(x) = exp( 1/B(x) * Integral B(x) dx ) where B(y) = Bessel polynomial y_n(-1) (cf. A000806).

Examples

			E.g.f.: A(x) = 1 + x + 2*x^2/2! + 7*x^3/3! + 33*x^4/4! + 202*x^5/5! +...
Related expansions:
log(A(x)) = x + x^2/2! + 3*x^3/3! + 11*x^4/4! + 61*x^5/5! + 393*x^6/6! +...
Integral A(x)^3 dx = x + 3*x^2/2! + 12*x^3/3! + 63*x^4/4! + 411*x^5/5! +...
1/A(x) = 1 - x - x^3/3! - x^4/4! - 12*x^5/5! - 41*x^6/6! - 451*x^7/7! -...
		

Crossrefs

Programs

  • Maple
    seq(n! * coeff(series(sqrt(LambertW(-1,(4*x-3)*exp(-3))/(4*x-3)), x, n+1), x, n), n=0..20); # Vaclav Kotesovec, Jan 05 2014
  • Mathematica
    CoefficientList[FullSimplify[Assuming[Element[x, Reals], Series[Sqrt[LambertW[-1,(4*x-3)*E^(-3)]/(4*x-3)], {x, 0, 20}]]], x] * Range[0, 20]! (* Vaclav Kotesovec, Jan 05 2014 *)
  • PARI
    {a(n)=local(A=1+x);for(i=1,n,A=exp(1/A*intformal(A^3+x*O(x^n))));n!*polcoeff(A,n)}
    for(n=0,30,print1(a(n),", "))

Formula

E.g.f.: sqrt(LambertW(-1,(4*x-3)*exp(-3))/(4*x-3)). - Vaclav Kotesovec, Jan 05 2014
Limit n->infinity (a(n)/n!)^(1/n) = 4/3. - Vaclav Kotesovec, Jan 05 2014

A006146 Sums of prime divisors of Ruth-Aaron numbers (A006145).

Original entry on oeis.org

5, 5, 7, 18, 15, 20, 44, 46, 29, 31, 50, 30, 20, 34, 75, 162, 146, 46, 14, 113, 53, 66, 333, 36, 514, 318, 43, 193, 279, 418, 30, 121, 55, 485, 200, 136, 77, 37, 211, 587, 147, 269, 477, 108, 136, 235, 185, 290, 333, 309, 493, 177, 199, 223, 641, 531, 182, 368
Offset: 1

Keywords

References

  • John L. Drost, Ruth/Aaron Pairs, J. Recreational Math. 28 (No. 2), 120-122.
  • Dana Mackenzie, Homage to an itinerant master, Science, vol. 275, p. 759, 1997.
  • Carol Nelson, David E. Penney, and Carl Pomerance, 714 and 715. Journal of Recreational Mathematics 7(2):87-89, 1974.

Programs

  • Maple
    with(numtheory): for n from 1 to 10000 do t0 := 0; t1 := factorset(n);
    for j from 1 to nops(t1) do t0 := t0+t1[ j ]; od: s[ n ] := t0; od:
    for n from 1 to 9999 do if s[ n ] = s[ n+1 ] then lprint(n,s[ n ]); fi; od:
  • Mathematica
    Cases[Partition[(Plus@@(First@#&/@FactorInteger@#)&/@Range@100000),2,1],{a_,a_}:>a] (* Hans Rudolf Widmer, May 31 2024 *)
  • Python
    from sympy import primefactors
    def aupton(terms):
      alst, k, sopfk, sopfkp1 = [], 0, 0, 1
      while len(alst) < terms:
        k, sopfk, sopfkp1 = k+1, sopfkp1, sum(p for p in primefactors(k+1))
        if sopfkp1 == sopfk: alst.append(sopfk)
      return alst
    print(aupton(58)) # Michael S. Branicky, May 05 2021

Formula

a(n) = A008472(A006145(n)) = A008472(A006145(n) + 1). - Amiram Eldar, Nov 24 2019

A006199 Bessel polynomial {y_n}'(-1).

Original entry on oeis.org

0, 1, -3, 21, -185, 2010, -25914, 386407, -6539679, 123823305, -2593076255, 59505341676, -1484818160748, 40025880386401, -1159156815431055, 35891098374564105, -1183172853341759129, 41372997479943753582, -1529550505546305534414, 59608871544962952539335
Offset: 1

Keywords

Comments

Absolute values give partitions into pairs.

References

  • G. Kreweras and Y. Poupard, Sur les partitions en paires d'un ensemble fini totalement ordonné, Publications de l'Institut de Statistique de l'Université de Paris, 23 (1978), 57-74.
  • J. Riordan, Combinatorial Identities, Wiley, 1968, p. 77.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Programs

  • Mathematica
    Join[{0}, Table[2*n*Pochhammer[1/2, n]*(-2)^(n - 1)* Hypergeometric1F1[1 - n, -2*n, -2], {n,1,50}]] (* G. C. Greubel, Aug 14 2017 *)
  • PARI
    for(n=0,50, print1(sum(k=0,n-1, ((n+k)!/(k!*(n-k)!))*(-1/2)^k), ", ")) \\ G. C. Greubel, Aug 14 2017

Formula

a(n) = A000806(n) + (n-1) * A000806(n-1). - Sean A. Irvine, Jan 23 2017
From G. C. Greubel, Aug 14 2017: (Start)
a(n) = 2*n*(1/2){n} * (-2)^(n-1) * hyergeometric1f1(1-n; -2*n; -2), where (a){n} is the Pochhammer symbol.
E.g.f.: (1+2*x)^(-3/2)*( (1+2*x)^(3/2) - x*(1+2*x)^(1/2) - x -1) * exp(sqrt(1+2*x) - 1), for offset 0. (End)
G.f.: (x/(1-x)^3)*hypergeometric2f0(2,3/2; - ; -2*x/(1-x)^2), for offset 0. - G. C. Greubel, Aug 16 2017

A101682 Expansion of 2 - exp(-1 + sqrt(1-4x)).

Original entry on oeis.org

1, 2, 0, 8, 80, 1152, 21056, 467840, 12248064, 369313280, 12605643776, 480491716608, 20231074672640, 932551401807872, 46708494389084160, 2525988902617776128, 146694190329387352064, 9105143756032486932480
Offset: 0

Author

Ralf Stephan, Dec 13 2004

Keywords

Crossrefs

Cf. A000806.

A122850 Exponential Riordan array (1, sqrt(1+2x)-1).

Original entry on oeis.org

1, 0, 1, 0, -1, 1, 0, 3, -3, 1, 0, -15, 15, -6, 1, 0, 105, -105, 45, -10, 1, 0, -945, 945, -420, 105, -15, 1, 0, 10395, -10395, 4725, -1260, 210, -21, 1, 0, -135135, 135135, -62370, 17325, -3150, 378, -28, 1, 0, 2027025, -2027025, 945945, -270270, 51975, -6930, 630, -36, 1
Offset: 0

Author

Paul Barry, Sep 14 2006

Keywords

Comments

Inverse of number triangle A122848. Entries are Bessel polynomial coefficients. Row sums are A000806.
Also the inverse Bell transform of the sequence "g(n) = 1 if n<2 else 0". For the definition of the Bell transform see A264428. - Peter Luschny, Jan 19 2016

Examples

			Triangle begins
  1
  0 1
  0 -1 1
  0 3 -3 1
  0 -15 15 -6 1
  0 105 -105 45 -10 1
  0 -945 945 -420 105 -15 1
  0 10395 -10395 4725 -1260 210 -21 1
  0 -135135 135135 -62370 17325 -3150 378 -28 1
  0 2027025 -2027025 945945 -270270 51975 -6930 630 -36 1
  0 -34459425 34459425 -16216200 4729725 -945945 135135 -13860 990 -45 1
  ...
		

Programs

  • Maple
    # The function BellMatrix is defined in A264428.
    BellMatrix(n -> (-1)^n*doublefactorial(2*n-1), 9); # Peter Luschny, Jan 27 2016
  • Mathematica
    BellMatrix[f_Function, len_] := With[{t = Array[f, len, 0]}, Table[BellY[n, k, t], {n, 0, len - 1}, {k, 0, len - 1}]];
    rows = 12;
    M = BellMatrix[Function[n, (-1)^n (2n-1)!!], rows];
    Table[M[[n, k]], {n, 1, rows}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jun 26 2018, after Peter Luschny *)
  • Sage
    # uses[bell_matrix from A264428]
    bell_matrix(lambda n: 1 if n<2 else 0, 12).inverse() # Peter Luschny, Jan 19 2016

Formula

T(n,k) = (-1)^(n-k)*A132062(n,k). - Philippe Deléham, Nov 06 2011
Triangle equals the matrix product A039757*A008277. Dobinski-type formula for the row polynomials: R(n,x) = x*exp(-x)*Sum_{k = 0..inf} (k-1)*(k-3)*(k-5)*...*(k-(2*n-3))*x^k/k! for n >= 1. Cf. A001497. - Peter Bala, Jun 23 2014
From Peter Bala, Jan 09 2018: (Start)
Alternative Dobinski-type formula for the row polynomials: R(n,x) = exp(-x)*Sum_{k = 0..inf} k*(k-2)*(k-4)*...*(k-(2*n-2))*x^k/k!.
Equivalently, R(n,x) = x o (x-2) o (x-4) o...o (x-(2*n-2)), where o denotes the white diamond product of polynomials. See the Bala link for the definition and details.
The white diamond products (x-1) o (x-3) o...o (x-(2*n-3)) give the row polynomials of the array with a factor of x removed.
If d is the first derivative operator f -> d/dx(f(x)) and D is the operator f(x) -> 1/x*d/dx(f(x)) then x^(2*n)*D^n = R(n,x*d), with the understanding that (x*d)^k is to interpreted as the operator f(x) -> x^k*d^k(f(x))/dx^k. (End)
Sum_{k=0..n} (-1)^(n+k) * T(n,k) = A144301(n). - Alois P. Heinz, Aug 31 2022

Extensions

More terms from Alois P. Heinz, Aug 31 2022

A380208 Expansion of e.g.f. exp( (1+3*x)^(1/3) - 1 ).

Original entry on oeis.org

1, 1, -1, 5, -39, 421, -5809, 97609, -1933455, 44107881, -1138752449, 32820576141, -1044523471991, 36379398867085, -1376300966184689, 56200996031812241, -2463713702730471199, 115400572452587463249, -5751849729149085927425, 303954806150664749166101
Offset: 0

Author

Seiichi Manyama, Jan 16 2025

Keywords

Crossrefs

Programs

  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(exp((1+3*x)^(1/3)-1)))

Formula

a(n) = Sum_{k=0..n} 3^(n-k) * Stirling1(n,k) * Bell(k).
a(n) = (1/e) * 3^n * n! * Sum_{k>=0} binomial(k/3,n)/k!.
a(0) = 1; a(n) = Sum_{k=1..n} (Product_{j=0..k-1} (-3*j+1)) * binomial(n-1,k-1) * a(n-k).
Previous Showing 11-20 of 30 results. Next