A275209 Expansion of (A(x)^2+A(x^2))/2 where A(x) = A001006(x)-1.
0, 0, 1, 2, 7, 17, 49, 129, 358, 970, 2679, 7364, 20414, 56634, 157877, 441084, 1236496, 3474672, 9790403, 27648486, 78256907, 221951037, 630723367, 1795576937, 5120487946, 14625574662, 41837955145, 119851980508, 343798121799, 987445317761, 2839518519233
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
Crossrefs
Cf. A275210.
Programs
-
Maple
b:= proc(n) option remember; `if`(n<2, 1, ((3*(n-1))*b(n-2)+(1+2*n)*b(n-1))/(n+2)) end: a:= proc(n) option remember; add(b(j)*b(n-j), j=1..n/2)- `if`(n::odd, 0, (t->t*(t-1)/2)(b(n/2))) end: seq(a(n), n=0..40); # Alois P. Heinz, Jul 19 2016
-
Mathematica
b[n_] := b[n] = If[n<2, 1, ((3*(n-1))*b[n-2] + (1+2*n)*b[n-1])/(n+2)]; a[n_] := a[n] = Sum[b[j]*b[n-j], {j, 1, n/2}] - If[OddQ[n], 0, Function[t, t*(t - 1)/2][b[n/2]]]; Table[a[n], {n, 0, 40}] (* Jean-François Alcover, May 16 2017, after Alois P. Heinz *)
Formula
a(2n+1) = A275210(2n+1).
Comments