A319075
Square array T(n,k) read by antidiagonal upwards in which row n lists the n-th powers of primes, hence column k lists the powers of the k-th prime, n >= 0, k >= 1.
Original entry on oeis.org
1, 2, 1, 4, 3, 1, 8, 9, 5, 1, 16, 27, 25, 7, 1, 32, 81, 125, 49, 11, 1, 64, 243, 625, 343, 121, 13, 1, 128, 729, 3125, 2401, 1331, 169, 17, 1, 256, 2187, 15625, 16807, 14641, 2197, 289, 19, 1, 512, 6561, 78125, 117649, 161051, 28561, 4913, 361, 23, 1, 1024, 19683, 390625, 823543, 1771561, 371293
Offset: 0
The corner of the square array is as follows:
A000079 A000244 A000351 A000420 A001020 A001022 A001026
A000012 1, 1, 1, 1, 1, 1, 1, ...
A000040 2, 3, 5, 7, 11, 13, 17, ...
A001248 4, 9, 25, 49, 121, 169, 289, ...
A030078 8, 27, 125, 343, 1331, 2197, 4913, ...
A030514 16, 81, 625, 2401, 14641, 28561, 83521, ...
A050997 32, 243, 3125, 16807, 161051, 371293, 1419857, ...
A030516 64, 729, 15625, 117649, 1771561, 4826809, 24137569, ...
A092759 128, 2187, 78125, 823543, 19487171, 62748517, 410338673, ...
A179645 256, 6561, 390625, 5764801, 214358881, 815730721, 6975757441, ...
...
Rows 0-13:
A000012,
A000040,
A001248,
A030078,
A030514,
A050997,
A030516,
A092759,
A179645,
A179665,
A030629,
A079395,
A030631,
A138031.
Other rows n:
A030635 (n=16),
A030637 (n=18),
A137486 (n=22),
A137492 (n=28),
A139571 (n=30),
A139572 (n=36),
A139573 (n=40),
A139574 (n=42),
A139575 (n=46),
A173533 (n=52),
A183062 (n=58),
A183085 (n=60),
A261700 (n=100).
Columns 1-15:
A000079,
A000244,
A000351,
A000420,
A001020,
A001022,
A001026,
A001029,
A009967,
A009973,
A009975,
A009981,
A009985,
A009987,
A009991.
A073214
Sum of two powers of 19.
Original entry on oeis.org
2, 20, 38, 362, 380, 722, 6860, 6878, 7220, 13718, 130322, 130340, 130682, 137180, 260642, 2476100, 2476118, 2476460, 2482958, 2606420, 4952198, 47045882, 47045900, 47046242, 47052740, 47176202, 49521980, 94091762, 893871740, 893871758, 893872100, 893878598, 894002060, 896347838, 940917620, 1787743478
Offset: 0
T(2,0) = 19^2 + 19^0 = 362.
Table begins:
2;
20, 38;
362, 380, 722;
6860, 6878, 7220, 13718;
130322, 130340, 130682, 137180, 260642;
...
Sums of two powers of n:
A073423 (0),
A007395 (1),
A173786 (2),
A055235 (3),
A055236 (4),
A055237 (5),
A055257 (6),
A055258 (7),
A055259 (8),
A055260 (9),
A052216 (10),
A073211 (11),
A194887 (12),
A072390 (13),
A055261 (16),
A073213 (17),
A073215 (23).
-
Flatten[Table[Table[19^n + 19^m, {m, 0, n}], {n, 0, 7}]] (* T. D. Noe, Jun 18 2013 *)
Total/@Tuples[19^Range[0,10],2]//Union (* Harvey P. Dale, Jan 04 2019 *)
-
from math import isqrt
def A073214(n): return 19**(a:=(k:=isqrt(m:=n<<1))+(m>k*(k+1))-1)+19**(n-1-(a*(a+1)>>1)) # Chai Wah Wu, Apr 09 2025
A013724
a(n) = 19^(2*n + 1).
Original entry on oeis.org
19, 6859, 2476099, 893871739, 322687697779, 116490258898219, 42052983462257059, 15181127029874798299, 5480386857784802185939, 1978419655660313589123979, 714209495693373205673756419
Offset: 0
Original entry on oeis.org
1, 38, 1444, 54872, 2085136, 79235168, 3010936384, 114415582592, 4347792138496, 165216101262848, 6278211847988224, 238572050223552512, 9065737908494995456, 344498040522809827328, 13090925539866773438464, 497455170514937390661632, 18903296479567620845142016
Offset: 0
A180705
Smallest power of 19 that begins with n.
Original entry on oeis.org
1, 2476099, 361, 47045881, 5480386857784802185939, 6859, 799006685782884121, 893871739, 93076495688256089536609610280499, 104127350297911241532841, 116490258898219, 12129821994589221844500501021364910179, 130321
Offset: 1
A319074
a(n) is the sum of the first n nonnegative powers of the n-th prime.
Original entry on oeis.org
1, 4, 31, 400, 16105, 402234, 25646167, 943531280, 81870575521, 15025258332150, 846949229880161, 182859777940000980, 23127577557875340733, 1759175174860440565844, 262246703278703657363377, 74543635579202247026882160, 21930887362370823132822661921, 2279217547342466764922495586798
Offset: 1
For n = 4 the 4th prime is 7 and the sum of the first four nonnegative powers of 7 is 7^0 + 7^1 + 7^2 + 7^3 = 1 + 7 + 49 + 343 = 400, so a(4) = 400.
Cf.
A000079,
A000244,
A000351,
A000420,
A001020,
A001022,
A001026,
A001029,
A009967,
A009973,
A009975,
A009981,
A009985,
A009987,
A009991.
Cf.
A126646,
A003462,
A003463,
A023000,
A016123,
A091030,
A091045,
A218722,
A218726,
A218732,
A218734,
A218740,
A218744,
A218746,
A218750.
A319076
Square array T(n,k) read by antidiagonal upwards in which column k lists the partial sums of the powers of the k-th prime, n >= 0, k >= 1.
Original entry on oeis.org
1, 3, 1, 7, 4, 1, 15, 13, 6, 1, 31, 40, 31, 8, 1, 63, 121, 156, 57, 12, 1, 127, 364, 781, 400, 133, 14, 1, 255, 1093, 3906, 2801, 1464, 183, 18, 1, 511, 3280, 19531, 19608, 16105, 2380, 307, 20, 1, 1023, 9841, 97656, 137257, 177156, 30941, 5220, 381, 24, 1, 2047, 29524, 488281, 960800, 1948717
Offset: 0
The corner of the square array is as follows:
A126646 A003462 A003463 A023000 A016123 A091030 A091045
A000012 1, 1, 1, 1, 1, 1, 1, ...
A008864 3, 4, 6, 8, 12, 14, 18, ...
A060800 7, 13, 31, 57, 133, 183, 307, ...
A131991 15, 40, 156, 400, 1464, 2380, 5220, ...
A131992 31, 121, 781, 2801, 16105, 30941, 88741, ...
A131993 63, 364, 3906, 19608, 177156, 402234, 1508598, ...
....... 127, 1093, 19531, 137257, 1948717, 5229043, 25646167, ...
....... 255, 3280, 97656, 960800, 21435888, 67977560, 435984840, ...
....... 511, 9841, 488281, 6725601, 235794769, 883708281, 7411742281, ...
...
Columns 1-15:
A126646,
A003462,
A003463,
A023000,
A016123,
A091030,
A091045,
A218722,
A218726,
A218732,
A218734,
A218740,
A218744,
A218746,
A218750.
Cf.
A000079,
A000244,
A000351,
A000420,
A001020,
A001022,
A001026,
A001029,
A009967,
A009973,
A009975,
A009981,
A009985,
A009987,
A009991.
A339794
a(n) is the least integer k satisfying rad(k)^2 < sigma(k) and whose prime factors set is the same as the prime factors set of A005117(n+1).
Original entry on oeis.org
4, 9, 25, 18, 49, 80, 121, 169, 112, 135, 289, 361, 441, 352, 529, 416, 841, 360, 961, 891, 1088, 875, 1369, 1216, 1053, 1681, 672, 1849, 1472, 2209, 2601, 2809, 3025, 3249, 1856, 3481, 3721, 1984, 4225, 1584, 4489, 4761, 1960, 5041, 5329, 4736, 5929, 2496, 6241
Offset: 1
n a(n) prime factor set
1 4 [2] A000079
2 9 [3] A000244
3 25 [5] A000351
4 18 [2, 3] A033845
5 49 [7] A000420
6 80 [2, 5] A033846
7 121 [11] A001020
8 169 [13] A001022
9 112 [2, 7] A033847
10 135 [3, 5] A033849
11 289 [17] A001026
12 361 [19] A001029
13 441 [3, 7] A033850
14 352 [2, 11] A033848
15 529 [23] A009967
16 416 [2, 13] A288162
17 841 [29] A009973
18 360 [2, 3, 5] A143207
Subsequence:
A001248 (squares of primes).
-
u(n) = {my(fn=factor(n)[,1]); for (k = n, n^2, my(fk = factor(k)); if (fk[,1] == fn, if (factorback(fk[,1])^2 < sigma(fk), return (k));););}
lista(nn) = {for (n=2, nn, if (issquarefree(n), print1(u(n), ", ");););}
A013810
a(n) = 19^(4*n + 1).
Original entry on oeis.org
19, 2476099, 322687697779, 42052983462257059, 5480386857784802185939, 714209495693373205673756419, 93076495688256089536609610280499, 12129821994589221844500501021364910179, 1580770532156861979997149793605296459437459
Offset: 0
-
[19^(4*n+1): n in [0..15]]; // Vincenzo Librandi, Jul 06 2011
-
A013810:=n->19^(4*n + 1); seq(A013810(n), n=0..15); # Wesley Ivan Hurt, Jan 28 2014
-
Table[19^(4n + 1), {n, 0, 15}] (* Wesley Ivan Hurt, Jan 28 2014 *)
NestList[130321#&,19,20] (* Harvey P. Dale, Apr 12 2023 *)
A013890
a(n) = 19^(5*n + 1).
Original entry on oeis.org
19, 47045881, 116490258898219, 288441413567621167681, 714209495693373205673756419, 1768453418076865701195582595329481, 4378865740046709085864680868712732574619, 10842505080063916320800450434338728415281531281, 26847115986241183138017674520015691090350184323352819
Offset: 0
Comments