cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 57 results. Next

A249423 Integers n such that A249150(n) = n; integers n such that A249151(n) = n+1.

Original entry on oeis.org

0, 35, 39, 62, 79, 83, 89, 104, 107, 131, 143, 149, 153, 159, 164, 167, 175, 179, 181, 194, 197, 199, 207, 209, 219, 259, 263, 269, 272, 274, 279, 285, 287, 296, 299, 305, 307, 311, 314, 319, 329, 339, 356, 359, 363, 373, 377, 379, 384, 389, 391, 395, 399, 407, 415, 417, 419, 424, 428, 431, 441, 449, 455, 461, 467, 475, 489, 512
Offset: 1

Views

Author

Antti Karttunen, Oct 28 2014

Keywords

Comments

Integers n such that {product of elements on row n of Pascal's triangle} is divisible by (n+1)! but not by (n+2)!

Crossrefs

Subsequence of A249434 and of A249429; it differs from the latter for the first time at n=17, where a(17) = 175 > 174 = A249429(17).

A249430 a(n) = Least integer k such that A249431(k) = n, and -1 if no such integer exists.

Original entry on oeis.org

1, 0, 350, 439, 174, 713, 323, 1923, 1052, 999, 1766, 3749, 2254, 2253, 1934, 3391, 4184, 4463, 3144, 5451, 9698, 16279, 6398, 5123, 2974, 12863, 19094, 4299, 16574, 5749
Offset: 0

Views

Author

Antti Karttunen, Nov 02 2014

Keywords

Comments

a(n) = the least natural number k such that {product of elements on row k of Pascal's triangle} is divisible by (k+n)! but not by (k+n+1)!
Note: a(18) = 3144 and a(24) = 2974. First values k for which A249431(k) = 16 and 17, if they exist, are larger than 4096.

Crossrefs

Nonnegative terms are all members of A249434.

Programs

  • Python
    from itertools import count
    from math import factorial
    def A249430(n):
        f = factorial(n)
        g = f*(n+1)
        pascal = [1]
        for k in count(0):
            a = 1
            for i in range(k+1):
                a = a*pascal[i]%f
            if not a:
                b = 1
                for i in range(k+1):
                    b = b*pascal[i]%g
                if b:
                    return k
            f = g
            g *= k+n+2
            pascal = [1]+[pascal[i]+pascal[i+1] for i in range(k)]+[1] # Chai Wah Wu, Aug 18 2025
  • Scheme
    (define (A249430 n) (let loop ((k 0)) (cond ((= n (A249431 k)) k) (else (loop (+ 1 k))))))
    

Extensions

a(16)-a(20) from Chai Wah Wu, Aug 19 2025
a(21)-a(29) from Chai Wah Wu, Aug 27 2025

A256113 Table read by rows: T(1,1) = 1, for n > 1: row n = union of distinct prime factors occurring in terms of n-th row of Pascal's triangle, cf. A007318.

Original entry on oeis.org

1, 2, 3, 2, 3, 2, 5, 2, 3, 5, 3, 5, 7, 2, 5, 7, 2, 3, 7, 2, 3, 5, 7, 2, 3, 5, 7, 11, 2, 3, 5, 7, 11, 2, 3, 5, 11, 13, 2, 3, 7, 11, 13, 3, 5, 7, 11, 13, 2, 3, 5, 7, 11, 13, 2, 5, 7, 11, 13, 17, 2, 3, 5, 7, 11, 13, 17, 2, 3, 7, 11, 13, 17, 19, 2, 3, 5, 11, 13
Offset: 1

Views

Author

Reinhard Zumkeller, Mar 16 2015

Keywords

Examples

			.  n |   T(n,k)   |                A001142(n) | A007318(n,0..n)
. ---+------------+---------------------------+-------------------------
.  1 | 1          |                         1 | 1  1
.  2 | 2          |                         2 | 1  2  1
.  3 | 3          |                         9 | 1  3  3   1
.  4 | 2 3        |                        96 | 1  4  6   4   1
.  5 | 2 5        |                      2500 | 1  5 10  10   5   1
.  6 | 2 3 5      |                    162000 | 1  6 15  20  15   6   1
.  7 | 3 5 7      |                  26471025 | 1  7 21  35  35  21   7   1
.  8 | 2 5 7      |               11014635520 | 1  8 28  56  70  56  28 ...
.  9 | 2 3 7      |            11759522374656 | 1  9 36  84 126 126  84 ...
. 10 | 2 3 5 7    |         32406091200000000 | 1 10 45 120 210 252 210 ...
. 11 | 2 3 5 7 11 |     231627686043080250000 | 1 11 55 165 330 462 462 ...
. 12 | 2 3 5 7 11 | 4311500661703860387840000 | 1 12 66 220 495 792 924 ...
		

Crossrefs

Cf. A007318, A027748, A001142, A004788 (row lengths), A056606 (row products).

Programs

  • Haskell
    a256113 n k = a256113_tabf !! (n-1) !! (n-1)
    a256113_row n = a256113_tabf !! (n-1)
    a256113_tabf = map a027748_row $ tail a001142_list

A265848 Pascal's triangle, right and left halves interchanged.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 3, 1, 1, 3, 4, 1, 1, 4, 6, 10, 5, 1, 1, 5, 10, 15, 6, 1, 1, 6, 15, 20, 35, 21, 7, 1, 1, 7, 21, 35, 56, 28, 8, 1, 1, 8, 28, 56, 70, 126, 84, 36, 9, 1, 1, 9, 36, 84, 126, 210, 120, 45, 10, 1, 1, 10, 45, 120, 210, 252, 462, 330, 165, 55, 11, 1, 1, 11, 55, 165, 330, 462
Offset: 0

Views

Author

Reinhard Zumkeller, Dec 24 2015

Keywords

Comments

Concatenations of rows of A014413 and A034868.
Alternative mirrored variant: concatenation of A034869 and A014462.

Examples

			.   0:                                1
.   1:                              1   1
.   2:                            1   1   2
.   3:                          3   1   1   3
.   4:                        4   1   1   4   6
.   5:                     10   5   1   1   5   10
.   6:                   15   6   1   1   6   15  20
.   7:                 35   21  7   1   1   7   21   35
.   8:              56   28   8   1   1   8   28  56   70
.   9:           126   84   36  9   1   1   9   36   84   126
.  10:        210   120  45  10   1   1   10  45  120  210  252
.  11:     462   330  165   55  11  1   1   11  55  165   330  462
.  12:  792   495  220   66  12   1   1   12  66  220  495  792   924  .
		

Crossrefs

Cf. A014413, A014462, A034868, A034869, A007318, A001405, A037952, A000079 (row sums), A001142 (row products).

Programs

  • Haskell
    a265848 n k = a265848_tabl !! n !! k
    a265848_row n = a265848_tabl !! n
    a265848_tabl = zipWith (++) ([] : a014413_tabf) a034868_tabf
  • Mathematica
    row[n_] := Binomial[n, Join[Range[Floor[n/2] + 1, n], Range[0, Floor[n/2]]]]; Array[row, 12, 0] // Flatten (* Amiram Eldar, May 13 2025 *)

Formula

T(n,k) = A007318(n, (k + floor((n+2)/2)) mod (n+1)).
T(n,k) = if k <= [(n+1)/2] then A014413(n,k+1) else A034868(n,k-[(n+1)/2]).
T(n,0) = A037952(n) for n > 0.
T(n,n) = A001405(n).

A296589 a(n) = Product_{k=0..n} binomial(2*n, k).

Original entry on oeis.org

1, 2, 24, 1800, 878080, 2857680000, 63117561830400, 9577928124440387712, 10077943267571584204800000, 74054886893191804566576837427200, 3822038592032831128918160803430400000000, 1391938996758770867922655936144556115037409280000
Offset: 0

Views

Author

Vaclav Kotesovec, Dec 16 2017

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Product[Binomial[2*n, k], {k, 0, n}], {n, 0, 12}]
    Table[((2*n)!)^(n+1) / (n! * BarnesG[2*n + 2]), {n, 0, 12}]

Formula

a(n) = ((2*n)!)^(n+1) / (n! * BarnesG(2*n + 2)).
a(n) ~ A * exp(n^2 + n - 1/24) / (2^(5/12) * Pi^((n+1)/2) * n^(n/2 + 5/12)), where A is the Glaisher-Kinkelin constant A074962.

Extensions

Missing a(0)=1 inserted by Georg Fischer, Nov 18 2021

A296590 a(n) = Product_{k=0..n} binomial(2*n - k, k).

Original entry on oeis.org

1, 1, 3, 30, 1050, 132300, 61122600, 104886381600, 674943865596000, 16407885372638760000, 1515727634953623371280000, 534621388490302221024396480000, 722849817707190846398223943885440000, 3759035907022704558524683975387453632000000
Offset: 0

Views

Author

Vaclav Kotesovec, Dec 16 2017

Keywords

Comments

Apart from the offset the same as A203469. - R. J. Mathar, Alois P. Heinz, Jan 02 2018

Crossrefs

Programs

  • Maple
    A296590 := proc(n)
        mul( binomial(2*n-k,k),k=0..n) ;
    end proc:
    seq(A296590(n),n=0..7) ; # R. J. Mathar, Jan 03 2018
  • Mathematica
    Table[Product[Binomial[2*n-k, k], {k, 0, n}], {n, 0, 15}]
    Table[Glaisher^(3/2) * 2^(n^2 - 1/24) * BarnesG[n + 3/2] / (E^(1/8) * Pi^(n/2 + 1/4) * BarnesG[n + 2]), {n, 0, 15}]

Formula

a(n) = A^(3/2) * 2^(n^2 - 1/24) * BarnesG(n + 3/2) / (exp(1/8) * Pi^(n/2 + 1/4) * BarnesG(n + 2)), where A is the Glaisher-Kinkelin constant A074962.
a(n) ~ A^(3/2) * exp(n/2 - 1/8) * 2^(n^2 - 7/24) / (Pi^((n+1)/2) * n^(n/2 + 3/8)), where A is the Glaisher-Kinkelin constant A074962.
Product_{1 <= j <= i <= n} (i + j - 1)/(i - j + 1). - Peter Bala, Oct 25 2024

A362288 a(n) = Product_{k=0..n} binomial(n,k)^k.

Original entry on oeis.org

1, 1, 2, 27, 9216, 312500000, 4251528000000000, 95432797246104853383515625, 14719075154533285649961930052505436160000, 65577306173662530591576256095315195684570038194755952705536
Offset: 0

Views

Author

Vaclav Kotesovec, Apr 14 2023

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Product[Binomial[n, k]^k, {k, 0, n}], {n, 0, 10}]
    Table[(n!)^(n*(n+1)/2) / BarnesG[n+2]^n, {n, 0, 10}]
  • PARI
    a(n) = prod(k=0, n, binomial(n,k)^k); \\ Michel Marcus, Apr 14 2023

Formula

a(n) = Product_{k=0..n} n!^k / k!^n.
a(n) = A067055(n) / A255268(n).
a(n) ~ A^n * exp((6*n^3 + 12*n^2 - n - 1)/24) / ((2*Pi)^(n*(n+1)/4) * n^(n*(3*n+2)/12)), where A is the Glaisher-Kinkelin constant A074962.

A249429 Integers n such that (n+1)! divides the product of elements on row n of Pascal's triangle.

Original entry on oeis.org

0, 35, 39, 62, 79, 83, 89, 104, 107, 131, 143, 149, 153, 159, 164, 167, 174, 175, 179, 181, 194, 197, 199, 207, 209, 219, 259, 263, 269, 272, 274, 279, 285, 287, 296, 299, 305, 307, 311, 314, 319, 323, 329, 339, 350, 356, 359, 363, 373, 377, 379, 384, 389, 391, 395, 398, 399, 407, 415, 417, 419, 424, 428, 431, 439, 440, 441, 449, 454, 455, 461, 467, 475, 489, 512
Offset: 1

Views

Author

Antti Karttunen, Nov 02 2014

Keywords

Comments

Integers n such that A249151(n) > n.

Crossrefs

Subsequence of A249434.
Differs from its subsequence A249423 for the first time at n=17, where a(17) = 174, while A249423(17) = 175.

A249436 Integers n such that n/2 < A249151(n) < n.

Original entry on oeis.org

11, 29, 44, 55, 59, 69, 71, 111, 119, 125, 139, 188, 215, 223, 230, 233, 239, 251, 324, 335, 349, 351, 447, 458, 474, 479, 493, 494, 503, 509, 560, 593, 599, 647, 662, 701, 714, 719, 831, 835, 849, 895, 956, 959, 979, 991, 1000, 1007, 1019, 1034, 1063, 1077, 1169, 1224, 1319, 1322, 1364, 1376, 1424, 1427, 1448, 1507
Offset: 1

Views

Author

Antti Karttunen, Nov 02 2014

Keywords

Comments

Integers n such that A001142(n) [product of elements on row n of Pascal's triangle] is divisible by floor[(n+1)/2]! but not by n!
These are the abscissas of "stray points" in the sparsely populated region between the two topmost rays visible in the scatter plot of A249151 which have slopes 1 and 1/2: A249434 (A006093) and A249424.

Crossrefs

A249437 gives the corresponding values at those points.
Subsequence of A249433.

A371603 a(n) = Product_{k=0..n} binomial(n^2, k^2).

Original entry on oeis.org

1, 1, 4, 1134, 333132800, 1319947441510156250, 876533819183888230348458418944000, 1185269534290897564185384010731432113450477770983533184
Offset: 0

Views

Author

Vaclav Kotesovec, Mar 30 2024

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Product[Binomial[n^2, k^2], {k, 0, n}], {n, 0, 8}]

Formula

a(n) = (n^2)!^(n+1) / (A255322(n) * A371624(n)).
a(n) ~ c * exp(2*n*(2*n^2/3 + 1)) / (A^(2*n) * 2^(4*n*(n^2 + 1)/3) * Pi^(n/2) * n^(7*n/6 - 1/4)), where c = 0.6367427... and A is the Glaisher-Kinkelin constant A074962.
Previous Showing 31-40 of 57 results. Next