A249348
a(n) = (A001147(n+1)^2-1)/8, where A001147(n+1) = 3*5*...*(2n+1).
Original entry on oeis.org
0, 1, 28, 1378, 111628, 13507003, 2282683528, 513603793828, 148431496416328, 53583770206294453, 23630442660975853828, 12500504167656226675078, 7812815104785141671923828, 5695542211388368278832470703, 4789950999777617722498107861328
Offset: 0
-
A249348 := proc(n)
(doublefactorial(2*n+1)^2-1)/8 ;
end proc:
seq(A249348(n),n=0..20) ;
-
a(n)=(prod(k=1,n,2*k+1)^2-1)/8
A166750
a(n) = (A001147(n))^3 = 2^(3*n)*GAMMA(n+1/2)^3/Pi^(3/2).
Original entry on oeis.org
1, 1, 27, 3375, 1157625, 843908625, 1123242379875, 2467763508585375, 8328701841475640625, 40918912147169822390625, 280662818417437811777296875, 2599218361363891574869546359375, 31624689802714468791437770554515625, 494135778167413574866215164914306640625
Offset: 0
-
DoubleFactorial:=func< n | &*[n..2 by -2] >; [DoubleFactorial((2*n-1))^3: n in [0..20]]; // Vincenzo Librandi, Jul 21 2017
-
seq((doublefactorial(2*n-1))^3, n=0..15);
-
Table[((2 n - 1)!!)^3, {n, 0, 30}] (* Vincenzo Librandi, Jul 21 2017 *)
A248652
Union of the factorial numbers (A000142) and the double factorials of odd numbers (A001147).
Original entry on oeis.org
1, 2, 3, 6, 15, 24, 105, 120, 720, 945, 5040, 10395, 40320, 135135, 362880, 2027025, 3628800, 34459425, 39916800, 479001600, 654729075, 6227020800, 13749310575, 87178291200, 316234143225, 1307674368000, 7905853580625, 20922789888000, 213458046676875, 355687428096000
Offset: 1
- Douglas Hoftstadter, Keynote lecture, DIMACS Workshop on Recognition of Integer Sequences, Oct. 10, 2014.
-
max = 10^15;
A000142 = Reap[For[k = 0, k! <= max, k++, Sow[k!]]][[2, 1]];
A001147 = Reap[For[k = 1, k!! <= max, k = k+2, Sow[k!!]]][[2, 1]];
Union[A000142, A001147] (* Jean-François Alcover, Jul 18 2022 *)
A249349
(A001147(n+1)-1)/2, equals the index of A249348(n) within the triangular numbers A000217.
Original entry on oeis.org
0, 1, 7, 52, 472, 5197, 67567, 1013512, 17229712, 327364537, 6874655287, 158117071612, 3952926790312, 106729023338437, 3095141676814687, 95949391981255312, 3166329935381425312, 110821547738349885937, 4100397266318945779687, 159915493386438885407812
Offset: 0
A263801
Partial sums of odd double factorials (A001147) with alternating signs.
Original entry on oeis.org
1, 0, 3, -12, 93, -852, 9543, -125592, 1901433, -32557992, 622171083, -13127139492, 303107003733, -7602746576892, 205855300099983, -5984428053529392, 185914355908981233, -6146745514853869392, 215496349961845902483, -7985298182676045656892
Offset: 0
For n = 4, a(4) = Sum_{k=0..4} (-1)^k*(2*k-1)!! = (-1)!! - 1!! + 3!! - 5!! + 7!! = 1 - 1 + 3 - 15 + 105 = 93.
G.f. = 1 + 3*x^2 - 12*x^3 + 93*x^4 - 852*x^5 + 9543*x^6 - 125592*x^7 + ...
-
Table[Sum[(-1)^k (2k-1)!!, {k, 0, n}], {n, 0, 20}]
Round@Table[(Sqrt[Pi] Erfc[1/Sqrt[2]] - Gamma[-n-1/2, 1/2] (2n+1)!!/(-2)^(n+1)) Sqrt[E/2], {n, 0, 20}]
-
for(n=0,50, print1(sum(k=0,n, (-1)^k*(2*k)!/(2^k*k!)), ", ")) \\ G. C. Greubel, Apr 08 2017
A350464
Table read by rows. Interpolating the swinging factorial (A056040) and the double factorial (A001147).
Original entry on oeis.org
1, 0, 1, 0, 1, 3, 0, 2, 15, 15, 0, 6, 91, 210, 105, 0, 6, 690, 2835, 3150, 945, 0, 30, 5214, 42405, 79695, 51975, 10395, 0, 20, 44772, 666666, 2057055, 2207205, 945945, 135135, 0, 140, 384756, 11274900, 54879825, 90090000, 62432370, 18918900, 2027025
Offset: 0
Triangle starts:
[0] 1;
[1] 0, 1;
[2] 0, 1, 3;
[3] 0, 2, 15, 15;
[4] 0, 6, 91, 210, 105;
[5] 0, 6, 690, 2835, 3150, 945;
[6] 0, 30, 5214, 42405, 79695, 51975, 10395;
[7] 0, 20, 44772, 666666, 2057055, 2207205, 945945, 135135;
-
Swing[n_] := n! / Floor[n/2]!^2;
Z[n_] := Flatten[Table[{0, Swing[j]}, {j, 0, n}]];
T[n_, k_] := BellY[2 n, k, Z[n - k]];
Table[T[n, k], {n, 0, 8}, {k, 0, n}] // Flatten
A358987
Omit the trailing 5 from double factorial of odd numbers (A001147(n)).
Original entry on oeis.org
1, 1, 3, 1, 10, 94, 1039, 13513, 202702, 3445942, 65472907, 1374931057, 31623414322, 790585358062, 21345804667687, 619028335362937, 19189878396251062, 633265987076285062, 22164309547669977187, 820079453263789155937, 31983098677287777081562, 1311307045768798860344062
Offset: 0
-
Join[{1,1,3},Table[((2n-1)!!-5)/10,{n,3,21}]] (* or *)
CoefficientList[Series[(14-5Exp[x]+1/Sqrt[1-2x]+2x(7+8x))/10,{x,0,21}],x]Table[n!,{n,0,21}]
A000779
a(n) = 2*(2n-1)!!-(n-1)!*2^(n-1), where (2n-1)!! is A001147(n).
Original entry on oeis.org
1, 4, 22, 162, 1506, 16950, 224190, 3408930, 58596930, 1123663590, 23782729950, 550718680050, 13849716607650, 375904338960150, 10952237584237950, 340947694234397250, 11294123783425733250, 396665528378000631750
Offset: 1
A034405
Let f(x) = (Pi - 2*arctan(1/(sqrt(x)*sqrt(x+2))))/(2*sqrt(x)*sqrt(x+2)), take (-1)^n*(n-th derivative from right at x=0) and multiply by A001147(n+1).
Original entry on oeis.org
1, 2, 14, 216, 5976, 262800, 16945200, 1511395200, 178458940800, 26959810348800, 5071861902240000, 1162523770531200000, 318880083535896960000, 103120648805872938240000, 38820554918130896951040000, 16829499728777665273344000000, 8323409867177396185818624000000, 4657912954052653582049258496000000
Offset: 0
James R. FitzSimons (cherry(AT)neta.com)
-
f:= gfun:-rectoproc({-(3*n+5)*(n+2)*a(n+1)+a(n+2)+(2*n+3)*(n+1)^2*(n+2)*a(n),a(0)=1,a(1)=2},a(n),remember):
map(f, [$0..30]); # Robert Israel, Mar 14 2018
-
Table[FullSimplify[-(2*n + 1)! * Hypergeometric2F1[1, n + 3/2, n + 2, 2]/ ((n + 1)*2^n) - I*n!^2], {n, 0, 20}] (* Vaclav Kotesovec, Jan 02 2020 *)
Table[FullSimplify[-I*Gamma[1 + n]^2 + I*2^(-1 - 2 n) * Beta[2, 1 + n, 1/2] * Gamma[2 + 2 n]], {n, 0, 20}] (* Vaclav Kotesovec, Jan 02 2020 *)
A103511
Smallest prime > double factorial number A001147(n).
Original entry on oeis.org
2, 5, 17, 107, 947, 10399, 135151, 2027033, 34459429, 654729139, 13749310577, 316234143227, 7905853580633, 213458046676877, 6190283353629379, 191898783962510743, 6332659870762850657, 221643095476699771957, 8200794532637891559553, 319830986772877770815629
Offset: 1
1!!=1, 2 is the first prime greater than 1;
6!!=10395, 10399 is the first prime greater than 10395.
Comments