cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 650 results. Next

A249348 a(n) = (A001147(n+1)^2-1)/8, where A001147(n+1) = 3*5*...*(2n+1).

Original entry on oeis.org

0, 1, 28, 1378, 111628, 13507003, 2282683528, 513603793828, 148431496416328, 53583770206294453, 23630442660975853828, 12500504167656226675078, 7812815104785141671923828, 5695542211388368278832470703, 4789950999777617722498107861328
Offset: 0

Views

Author

M. F. Hasler, Oct 26 2014

Keywords

Comments

These are the numerators of the partial sums S(n) = Sum_{k=1..n} A000217(k)/A001147(k+1)^2 before simplification, i.e., a(n) = S(n)*A001147(n+1)^2, where A000217(n) = n(n+1)/2. The series S(n) has sum 1/8, actually S(n) = 1/8 - 1/(8*A001147(n+1)^2). (Similarly, Sum_{n=1..oo} A249354(n)/A007559(n+1)^3 = 1/9, where A249354(n) = 3n^3+3n^2+n.)
This is a subsequence of the centered 9-gonal numbers A060544, which are a subsequence of the triangular numbers A000217.

Programs

  • Maple
    A249348 := proc(n)
        (doublefactorial(2*n+1)^2-1)/8 ;
    end proc:
    seq(A249348(n),n=0..20) ;
  • PARI
    a(n)=(prod(k=1,n,2*k+1)^2-1)/8

Formula

(-n+1)*a(n) +2*n*(2*n^2-1)*a(n-1) -(n+1)*(-1+2*n)^2*a(n-2)=0. - R. J. Mathar, Oct 28 2014

Extensions

a(11)/a(12) corrected by Georg Fischer, Mar 12 2020

A166750 a(n) = (A001147(n))^3 = 2^(3*n)*GAMMA(n+1/2)^3/Pi^(3/2).

Original entry on oeis.org

1, 1, 27, 3375, 1157625, 843908625, 1123242379875, 2467763508585375, 8328701841475640625, 40918912147169822390625, 280662818417437811777296875, 2599218361363891574869546359375, 31624689802714468791437770554515625, 494135778167413574866215164914306640625
Offset: 0

Views

Author

Karol A. Penson, Oct 21 2009

Keywords

Programs

  • Magma
    DoubleFactorial:=func< n | &*[n..2 by -2] >; [DoubleFactorial((2*n-1))^3: n in [0..20]]; // Vincenzo Librandi, Jul 21 2017
  • Maple
    seq((doublefactorial(2*n-1))^3, n=0..15);
  • Mathematica
    Table[((2 n - 1)!!)^3, {n, 0, 30}] (* Vincenzo Librandi, Jul 21 2017 *)

Formula

G.f.: sum(a(n)*x^n/(n!)^3,n=0..infinity) = 4*EllipticK((1/2)*sqrt(2-2*sqrt(1-8*x)))^2/Pi^2, sum(a(n)*x^n/(n!)^4,n=0..infinity)=hypergeom([1/2,1/2,1/2],[1,1,1],8*x).
Asymptotics: a(n) = (2*sqrt(2)/((exp(-1/2))^3*(exp(1/2))^3)-(1/4)*sqrt(2)/((exp(-1/2))^3*(exp(1/2))^3*n)+(1/64)*sqrt(2)/((exp(-1/2))^3*(exp(1/2))^3*n^2)+O(1/n^3))*(2^n)^3/(((1/n)^n)^3*(exp(n))^3), n->infinity.
Integral representation as n-th moment of a positive function on a positive halfaxis (solution of the Stieltjes moment problem),in Maple notation:
a(n) = int(x^n*MeijerG([[],[]],[[ -1/2,-1/2,-1/2],[]],x/8)/(8*(Pi)^(3/2)), x=0..infinity), n=0,1... .
This solution is not unique.
a(n) -(2*n-1)^3*a(n-1) +a(n-2) -(2*n-5)^3*a(n-3) =0. - R. J. Mathar, Jul 24 2012

A248652 Union of the factorial numbers (A000142) and the double factorials of odd numbers (A001147).

Original entry on oeis.org

1, 2, 3, 6, 15, 24, 105, 120, 720, 945, 5040, 10395, 40320, 135135, 362880, 2027025, 3628800, 34459425, 39916800, 479001600, 654729075, 6227020800, 13749310575, 87178291200, 316234143225, 1307674368000, 7905853580625, 20922789888000, 213458046676875, 355687428096000
Offset: 1

Views

Author

Olivier Gérard, Oct 10 2014

Keywords

References

  • Douglas Hoftstadter, Keynote lecture, DIMACS Workshop on Recognition of Integer Sequences, Oct. 10, 2014.

Crossrefs

See A268645 for another version.

Programs

Extensions

Revised by N. J. A. Sloane, Feb 09 2016

A249349 (A001147(n+1)-1)/2, equals the index of A249348(n) within the triangular numbers A000217.

Original entry on oeis.org

0, 1, 7, 52, 472, 5197, 67567, 1013512, 17229712, 327364537, 6874655287, 158117071612, 3952926790312, 106729023338437, 3095141676814687, 95949391981255312, 3166329935381425312, 110821547738349885937, 4100397266318945779687, 159915493386438885407812
Offset: 0

Views

Author

M. F. Hasler, Oct 26 2014

Keywords

Comments

Also a(n) = floor(sqrt(A249348(n)*2)).
The positive terms are of the form 3k-2; this k (= 1, 3, 18, 157, ...) is the index of A249348(n) within the centered 9-gonal numbers A060544.

Programs

  • PARI
    a(n)=A001147(n+1)\2
    
  • PARI
    vector(10,n,A001147(n)\2) \\ To get the initial term a(0) for n=1.

Formula

a(n) +(-2*n-3)*a(n-1) +(4*n-1)*a(n-2) +(-2*n+3)*a(n-3)=0. - R. J. Mathar, Oct 28 2014

A263801 Partial sums of odd double factorials (A001147) with alternating signs.

Original entry on oeis.org

1, 0, 3, -12, 93, -852, 9543, -125592, 1901433, -32557992, 622171083, -13127139492, 303107003733, -7602746576892, 205855300099983, -5984428053529392, 185914355908981233, -6146745514853869392, 215496349961845902483, -7985298182676045656892
Offset: 0

Views

Author

Vladimir Reshetnikov, Oct 26 2015

Keywords

Examples

			For n = 4, a(4) = Sum_{k=0..4} (-1)^k*(2*k-1)!! = (-1)!! - 1!! + 3!! - 5!! + 7!! = 1 - 1 + 3 - 15 + 105 = 93.
G.f. = 1 + 3*x^2 - 12*x^3 + 93*x^4 - 852*x^5 + 9543*x^6 - 125592*x^7 + ...
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[(-1)^k (2k-1)!!, {k, 0, n}], {n, 0, 20}]
    Round@Table[(Sqrt[Pi] Erfc[1/Sqrt[2]] - Gamma[-n-1/2, 1/2] (2n+1)!!/(-2)^(n+1)) Sqrt[E/2], {n, 0, 20}]
  • PARI
    for(n=0,50, print1(sum(k=0,n, (-1)^k*(2*k)!/(2^k*k!)), ", ")) \\ G. C. Greubel, Apr 08 2017

Formula

a(n) = Sum_{k=0..n} (-1)^k*(2*k-1)!!.
a(n) = (sqrt(Pi)*erfc(1/sqrt(2))-Gamma(-n-1/2, 1/2)*(2*n+1)!!/(-2)^(n+1))*exp(1/2)/sqrt(2), where Gamma(a, x) is the upper incomplete Gamma function.
E.g.f.: 1/sqrt(2*x+1)+sqrt(Pi/2)*exp(x+1/2)*(erf(sqrt(x+1/2))-erf(1/sqrt(2))).
Recurrence: a(0) = 1, a(1) = 0, a(n+2) = (2*n+3)*a(n)-(2*n+2)*a(n+1).
0 = a(n)*(-2*a(n+1) + a(n+2) + a(n+3)) + a(n+1)*(+3*a(n+1) - 3*a(n+2) - a(n+3)) + a(n+2)*(+a(n+2)) if n>=0. - Michael Somos, Oct 30 2015

A350464 Table read by rows. Interpolating the swinging factorial (A056040) and the double factorial (A001147).

Original entry on oeis.org

1, 0, 1, 0, 1, 3, 0, 2, 15, 15, 0, 6, 91, 210, 105, 0, 6, 690, 2835, 3150, 945, 0, 30, 5214, 42405, 79695, 51975, 10395, 0, 20, 44772, 666666, 2057055, 2207205, 945945, 135135, 0, 140, 384756, 11274900, 54879825, 90090000, 62432370, 18918900, 2027025
Offset: 0

Views

Author

Peter Luschny, Mar 13 2022

Keywords

Examples

			Triangle starts:
[0] 1;
[1] 0,  1;
[2] 0,  1,   3;
[3] 0,  2,   15,     15;
[4] 0,  6,   91,     210,     105;
[5] 0,  6,   690,    2835,    3150,     945;
[6] 0,  30,  5214,   42405,   79695,    51975,    10395;
[7] 0,  20,  44772,  666666,  2057055,  2207205,  945945,  135135;
		

Crossrefs

Cf. A350465 (row sums), A350466 (alternating row sums).

Programs

  • Mathematica
    Swing[n_] := n! / Floor[n/2]!^2;
    Z[n_] := Flatten[Table[{0, Swing[j]}, {j, 0, n}]];
    T[n_, k_] := BellY[2 n, k, Z[n - k]];
    Table[T[n, k], {n, 0, 8}, {k, 0, n}] // Flatten

Formula

The partial Bell polynomials Y_{2*n, k}(Z) applied to the list Z of the aerated swinging factorials (A056040).

A358987 Omit the trailing 5 from double factorial of odd numbers (A001147(n)).

Original entry on oeis.org

1, 1, 3, 1, 10, 94, 1039, 13513, 202702, 3445942, 65472907, 1374931057, 31623414322, 790585358062, 21345804667687, 619028335362937, 19189878396251062, 633265987076285062, 22164309547669977187, 820079453263789155937, 31983098677287777081562, 1311307045768798860344062
Offset: 0

Views

Author

Stefano Spezia, Dec 10 2022

Keywords

Comments

A001147(n) has only a trailing five for n > 2.
Proof: being trivial to prove that A001147(n) ends with at least a digit 5 for n > 2, it remains to prove that the tenth digit of A001147(n) is not equal to 5. Considering the product A001147(n) = A001147(n-1)*(2*n - 1) for n > 2, it is easy to verify that the tenth digit of A001147(n) is congruent to 2 modulo 5 if the tenth digit of A001147(n-1) is congruent to 2 modulo 5. Since for n <= 8 the tenth digit of A001147(n) is not equal to 5, and it is equal to 2 for n = 8, it follows that the tenth digit of A001147(n) for n > 8 is congruent to 2 modulo 5, and therefore, not equal to 5. QED.

Crossrefs

Cf. A001147.

Programs

  • Mathematica
    Join[{1,1,3},Table[((2n-1)!!-5)/10,{n,3,21}]] (* or *)
    CoefficientList[Series[(14-5Exp[x]+1/Sqrt[1-2x]+2x(7+8x))/10,{x,0,21}],x]Table[n!,{n,0,21}]

Formula

a(n) = (A001147(n) - 5)/10 for n > 2.
E.g.f.: (14 + 2*x*(7 + 8*x) - 5*exp(x) + 1/sqrt(1 - 2*x))/10.
D-finite with recurrence a(n) + (-2*n+1)*a(n-1) + (-n+1) = 0 for n > 3. - R. J. Mathar, Mar 25 2024

A000779 a(n) = 2*(2n-1)!!-(n-1)!*2^(n-1), where (2n-1)!! is A001147(n).

Original entry on oeis.org

1, 4, 22, 162, 1506, 16950, 224190, 3408930, 58596930, 1123663590, 23782729950, 550718680050, 13849716607650, 375904338960150, 10952237584237950, 340947694234397250, 11294123783425733250, 396665528378000631750
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A001147.

Programs

  • Magma
    A001147:=func< n | n eq 0 select 1 else &*[ k: k in [1..2*n-1 by 2] ] >; [ 2*A001147(n)-Factorial(n-1)*2^(n-1): n in [1..20] ]; // Klaus Brockhaus, Jun 22 2011
  • Maple
    seq(2*doublefactorial(2*n-1)-(n-1)!*2^(n-1), n=1..18); # Nathaniel Johnston, Jun 23 2011
  • Mathematica
    Table[2*(2n-1)!! - (n-1)!*2^(n-1), {n, 1, 20}] (* Jean-François Alcover, Feb 11 2016 *)

Extensions

More terms from Sean A. Irvine, Jun 13 2011

A034405 Let f(x) = (Pi - 2*arctan(1/(sqrt(x)*sqrt(x+2))))/(2*sqrt(x)*sqrt(x+2)), take (-1)^n*(n-th derivative from right at x=0) and multiply by A001147(n+1).

Original entry on oeis.org

1, 2, 14, 216, 5976, 262800, 16945200, 1511395200, 178458940800, 26959810348800, 5071861902240000, 1162523770531200000, 318880083535896960000, 103120648805872938240000, 38820554918130896951040000, 16829499728777665273344000000, 8323409867177396185818624000000, 4657912954052653582049258496000000
Offset: 0

Views

Author

James R. FitzSimons (cherry(AT)neta.com)

Keywords

Comments

This is related to the solution of Problem 12150 of American Math. Monthly, vol. 126 (2019), page 946. - Stephen J. Herschkorn, Dec 14 2019

Crossrefs

Cf. A001147.

Programs

  • Maple
    f:= gfun:-rectoproc({-(3*n+5)*(n+2)*a(n+1)+a(n+2)+(2*n+3)*(n+1)^2*(n+2)*a(n),a(0)=1,a(1)=2},a(n),remember):
    map(f, [$0..30]); # Robert Israel, Mar 14 2018
  • Mathematica
    Table[FullSimplify[-(2*n + 1)! * Hypergeometric2F1[1, n + 3/2, n + 2, 2]/ ((n + 1)*2^n) - I*n!^2], {n, 0, 20}] (* Vaclav Kotesovec, Jan 02 2020 *)
    Table[FullSimplify[-I*Gamma[1 + n]^2 + I*2^(-1 - 2 n) * Beta[2, 1 + n, 1/2] * Gamma[2 + 2 n]], {n, 0, 20}] (* Vaclav Kotesovec, Jan 02 2020 *)

Formula

a(n+2) = (3*n+5)*(n+2)*a(n+1) + (2*n+3)*(n+1)^2*a(n). - Robert Israel, Mar 14 2018
Empirical observation: a(n-1) = (2*n - 1)! / 4^(n-1) * Integral_{t=0..Pi/4} sec(t)^(2*n). - Stephen J. Herschkorn, Dec 14 2019
a(n) ~ sqrt(Pi) * 2^(n+2) * n^(2*n + 1/2) / exp(2*n). - Vaclav Kotesovec, Jan 02 2020
a(n) = (1/2^n)*Sum_{i=0..n} binomial(n,i) * (2*(n-i))! * (2*i)!. - Håvar Andre Melheim Salbu, May 22 2022

Extensions

Edited by, and more terms from Robert Israel, Mar 14 2018

A103511 Smallest prime > double factorial number A001147(n).

Original entry on oeis.org

2, 5, 17, 107, 947, 10399, 135151, 2027033, 34459429, 654729139, 13749310577, 316234143227, 7905853580633, 213458046676877, 6190283353629379, 191898783962510743, 6332659870762850657, 221643095476699771957, 8200794532637891559553, 319830986772877770815629
Offset: 1

Views

Author

Lei Zhou, Feb 15 2005

Keywords

Examples

			1!!=1, 2 is the first prime greater than 1;
6!!=10395, 10399 is the first prime greater than 10395.
		

Crossrefs

Cf. A001147.

Programs

  • Mathematica
    Table[NextPrime[(2n-1)!!],{n,20}] (* James C. McMahon, Jan 21 2024 *)

Extensions

a(19)-a(20) from James C. McMahon, Jan 21 2024
Previous Showing 21-30 of 650 results. Next