cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 156 results. Next

A327334 Triangle read by rows where T(n,k) is the number of labeled simple graphs with n vertices and vertex-connectivity k.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 4, 3, 1, 0, 26, 28, 9, 1, 0, 296, 490, 212, 25, 1, 0, 6064, 15336, 9600, 1692, 75, 1, 0, 230896, 851368, 789792, 210140, 14724, 231, 1, 0
Offset: 0

Views

Author

Gus Wiseman, Sep 01 2019

Keywords

Comments

The vertex-connectivity of a graph is the minimum number of vertices that must be removed (along with any incident edges) to obtain a non-connected graph or singleton. Except for complete graphs, this is the same as cut-connectivity (A327125).

Examples

			Triangle begins:
    1
    1   0
    1   1   0
    4   3   1   0
   26  28   9   1   0
  296 490 212  25   1   0
		

Crossrefs

The unlabeled version is A259862.
Row sums are A006125.
Column k = 0 is A054592, if we assume A054592(0) = A054592(1) = 1.
Column k = 1 is A327336.
Row sums without the first column are A001187, if we assume A001187(0) = A001187(1) = 0.
Row sums without the first two columns are A013922, if we assume A013922(1) = 0.
Cut-connectivity is A327125.
Spanning edge-connectivity is A327069.
Non-spanning edge-connectivity is A327148.

Programs

  • Mathematica
    csm[s_]:=With[{c=Select[Subsets[Range[Length[s]],{2}],Length[Intersection@@s[[#]]]>0&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    vertConnSys[vts_,eds_]:=Min@@Length/@Select[Subsets[vts],Function[del,Length[del]==Length[vts]-1||csm[DeleteCases[DeleteCases[eds,Alternatives@@del,{2}],{}]]!={Complement[vts,del]}]];
    Table[Length[Select[Subsets[Subsets[Range[n],{2}]],vertConnSys[Range[n],#]==k&]],{n,0,5},{k,0,n}]

Extensions

a(21)-a(35) from Robert Price, May 14 2021

A245797 The number of labeled graphs of n vertices that have endpoints, where an endpoint is a vertex with degree 1.

Original entry on oeis.org

0, 1, 6, 49, 710, 19011, 954184, 90154415, 16108626420, 5481798833245, 3582369649269620, 4532127781040045649, 11177949079089720090800, 54050029251399545975868271, 514598463471970554205910304780, 9677402372862708729859372687791391
Offset: 1

Views

Author

Chai Wah Wu, Aug 01 2014

Keywords

Crossrefs

Equal to row sums of A245796.
The covering case is A327227.
The connected case is A327362.
The generalization to set-systems is A327228.
BII-numbers of set-systems with minimum degree 1 are A327105.

Programs

  • Mathematica
    m = 16;
    egf = Exp[x^2/2]*Sum[2^Binomial[n, 2]*(x/Exp[x])^n/n!, {n, 0, m}];
    A059167[n_] := SeriesCoefficient[egf, {x, 0, n}]*n!;
    a[n_] := 2^(n(n-1)/2) - A059167[n];
    Array[a, m] (* Jean-François Alcover, Feb 23 2019 *)
    Table[Length[Select[Subsets[Subsets[Range[n],{2}]],Min@@Length/@Split[Sort[Join@@#]]==1&]],{n,0,5}] (* Gus Wiseman, Sep 11 2019 *)

Formula

a(n) = 2^(n*(n+1)/2) - A059167(n).
Binomial transform of A327227 (assuming a(0) = 0).

Extensions

a(9)-a(16) from Andrew Howroyd, Oct 26 2017

A326750 BII-numbers of clutters (connected antichains of nonempty sets).

Original entry on oeis.org

0, 1, 2, 4, 8, 16, 20, 32, 36, 48, 52, 64, 128, 256, 260, 272, 276, 292, 304, 308, 320, 512, 516, 532, 544, 548, 560, 564, 576, 768, 772, 784, 788, 800, 804, 816, 820, 832, 1024, 1040, 1056, 1072, 1088, 2048, 2064, 2068, 2080, 2084, 2096, 2100, 2112, 2304
Offset: 1

Views

Author

Gus Wiseman, Jul 23 2019

Keywords

Comments

A binary index of n is any position of a 1 in its reversed binary expansion. We define the set-system with BII-number n to be obtained by taking the binary indices of each binary index of n. Every finite set of finite nonempty sets has a different BII-number. For example, 18 has reversed binary expansion (0,1,0,0,1), and since the binary indices of 2 and 5 are {2} and {1,3} respectively, the BII-number of {{2},{1,3}} is 18.
Elements of a set-system are sometimes called edges. In an antichain, no edge is a subset or superset of any other edge.

Examples

			The sequence of all clutters together with their BII-numbers begins:
    0: {}
    1: {{1}}
    2: {{2}}
    4: {{1,2}}
    8: {{3}}
   16: {{1,3}}
   20: {{1,2},{1,3}}
   32: {{2,3}}
   36: {{1,2},{2,3}}
   48: {{1,3},{2,3}}
   52: {{1,2},{1,3},{2,3}}
   64: {{1,2,3}}
  128: {{4}}
  256: {{1,4}}
  260: {{1,2},{1,4}}
  272: {{1,3},{1,4}}
  276: {{1,2},{1,3},{1,4}}
  292: {{1,2},{2,3},{1,4}}
  304: {{1,3},{2,3},{1,4}}
  308: {{1,2},{1,3},{2,3},{1,4}}
  320: {{1,2,3},{1,4}}
		

Crossrefs

The number of clutters spanning n vertices is A048143(n).
Other BII-numbers: A309314 (hyperforests), A326701 (set partitions), A326703 (chains), A326704 (antichains), A326749 (connected), A326751 (blobs), A326752 (hypertrees), A326754 (covers).

Programs

  • Mathematica
    bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}];
    Select[Range[0,1000],stableQ[bpe/@bpe[#],SubsetQ]&&Length[csm[bpe/@bpe[#]]]<=1&]
  • Python
    # see linked program

Formula

Intersection of A326749 and A326704.

A327227 Number of labeled simple graphs covering n vertices with at least one endpoint/leaf.

Original entry on oeis.org

0, 0, 1, 3, 31, 515, 15381, 834491, 83016613, 15330074139, 5324658838645, 3522941267488973, 4489497643961740521, 11119309286377621015089, 53893949089393110881259181, 513788884660608277842596504415, 9669175277199248753133328740702449
Offset: 0

Views

Author

Gus Wiseman, Sep 01 2019

Keywords

Comments

Covering means there are no isolated vertices.
A leaf is an edge containing a vertex that does not belong to any other edge, while an endpoint is a vertex belonging to only one edge.
Also graphs with minimum vertex-degree 1.

Examples

			The a(4) = 31 edge-sets:
  {12,34}  {12,13,14}  {12,13,14,23}
  {13,24}  {12,13,24}  {12,13,14,24}
  {14,23}  {12,13,34}  {12,13,14,34}
           {12,14,23}  {12,13,23,24}
           {12,14,34}  {12,13,23,34}
           {12,23,24}  {12,14,23,24}
           {12,23,34}  {12,14,24,34}
           {12,24,34}  {12,23,24,34}
           {13,14,23}  {13,14,23,34}
           {13,14,24}  {13,14,24,34}
           {13,23,24}  {13,23,24,34}
           {13,23,34}  {14,23,24,34}
           {13,24,34}
           {14,23,24}
           {14,23,34}
           {14,24,34}
		

Crossrefs

Column k=1 of A327366.
The non-covering version is A245797.
The unlabeled version is A324693.
The generalization to set-systems is A327229.
BII-numbers of set-systems with minimum degree 1 are A327105.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Subsets[Range[n],{2}]],Union@@#==Range[n]&&Min@@Length/@Split[Sort[Join@@#]]==1&]],{n,0,5}]

Formula

Inverse binomial transform of A245797, if we assume A245797(0) = 0.

A059166 Number of n-node connected labeled graphs without endpoints.

Original entry on oeis.org

1, 1, 0, 1, 10, 253, 12058, 1052443, 169488200, 51045018089, 29184193354806, 32122530765469967, 68867427921051098084, 290155706369032525823085, 2417761578629525173499004146, 40013923790443379076988789688611, 1318910080173114018084245406769861936
Offset: 0

Views

Author

Vladeta Jovovic, Jan 12 2001

Keywords

References

  • Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, p. 404.

Crossrefs

Cf. A059167 (n-node labeled graphs without endpoints), A004108 (n-node connected unlabeled graphs without endpoints), A004110 (n-node unlabeled graphs without endpoints).

Programs

  • Maple
    c:= proc(n) option remember; `if`(n=0, 1, 2^(n*(n-1)/2)-
          add(k*binomial(n, k)*2^((n-k)*(n-k-1)/2)*c(k), k=1..n-1)/n)
        end:
    a:= n-> max(0, add((-1)^i*binomial(n, i)*c(n-i)*(n-i)^i, i=0..n)):
    seq(a(n), n=0..20);  # Alois P. Heinz, Oct 27 2017
  • Mathematica
    Flatten[{1,1,0,Table[n!*Sum[(-1)^(n-j)*SeriesCoefficient[1+Log[Sum[2^(k*(k-1)/2)*x^k/k!,{k,0,j}]],{x,0,j}]*j^(n-j)/(n-j)!,{j,0,n}],{n,3,15}]}] (* Vaclav Kotesovec, May 14 2015 *)
    c[0] = 1; c[n_] := c[n] = 2^(n*(n-1)/2) - Sum[k*Binomial[n, k]*2^((n-k)*(n - k - 1)/2)*c[k], {k, 1, n-1}]/n; a[0] = a[1] = 1; a[2] = 0; a[n_] := Sum[(-1)^i*Binomial[n, i]*c[n-i]*(n-i)^i, {i, 0, n}]; Table[a[n], {n, 0, 15}] (* Jean-François Alcover, Oct 27 2017, using Alois P. Heinz's code for c(n) *)
  • PARI
    seq(n)={Vec(serlaplace(1 + x^2/2 + log(sum(k=0, n, 2^binomial(k, 2)*(x*exp(-x + O(x^n)))^k/k!))))} \\ Andrew Howroyd, Sep 09 2018

Formula

a(n) = Sum_{i=0..n} (-1)^i*binomial(n, i)*c(n-i)*(n-i)^i, for n>2, a(0)=1, a(1)=1, a(2)=0, where c(n) is number of n-node connected labeled graphs (cf. A001187).
E.g.f.: 1 + x^2/2 + log(Sum_{n >= 0} 2^binomial(n, 2)*(x*exp(-x))^n/n!).
a(n) ~ 2^(n*(n-1)/2). - Vaclav Kotesovec, May 14 2015
Logarithmic transform of A100743, if we assume a(1) = 0. - Gus Wiseman, Aug 15 2019

Extensions

More terms from John Renze (jrenze(AT)yahoo.com), Feb 01 2001

A369197 Number of labeled connected loop-graphs with n vertices, none isolated, and at most n edges.

Original entry on oeis.org

1, 1, 3, 13, 95, 972, 12732, 202751, 3795864, 81609030, 1980107840, 53497226337, 1592294308992, 51758060711792, 1824081614046720, 69272000503031475, 2819906639193992192, 122488526636380368714, 5654657850859704139776, 276462849597009068108405, 14270030377126199463936000
Offset: 0

Views

Author

Gus Wiseman, Jan 17 2024

Keywords

Examples

			The a(0) = 0 through a(3) = 13 loop-graphs (loops shown as singletons):
  .  {{1}}  {{1,2}}      {{1,2},{1,3}}
            {{1},{1,2}}  {{1,2},{2,3}}
            {{2},{1,2}}  {{1,3},{2,3}}
                         {{1},{1,2},{1,3}}
                         {{1},{1,2},{2,3}}
                         {{1},{1,3},{2,3}}
                         {{2},{1,2},{1,3}}
                         {{2},{1,2},{2,3}}
                         {{2},{1,3},{2,3}}
                         {{3},{1,2},{1,3}}
                         {{3},{1,2},{2,3}}
                         {{3},{1,3},{2,3}}
                         {{1,2},{1,3},{2,3}}
		

Crossrefs

The minimal case is A000272.
Connected case of A066383 and A369196, loopless A369192 and A369193.
The loopless case is A129271, connected case of A369191.
The case of equality is A368951, connected case of A368597.
This is the connected case of A369194.
A000085, A100861, A111924 count set partitions into singletons or pairs.
A001187 counts connected graphs, unlabeled A001349.
A006125 counts (simple) graphs, unlabeled A000088.
A006129 counts covering graphs, unlabeled A002494.
A054548 counts graphs covering n vertices with k edges, with loops A369199.
A062740 counts connected loop-graphs.
A322661 counts covering loop-graphs, unlabeled A322700.
A368927 counts choosable loop-graphs, covering A369140.
A369141 counts non-choosable loop-graphs, covering A369142.

Programs

  • PARI
    seq(n)={my(t=-lambertw(-x + O(x*x^n))); Vec(serlaplace(log(1/(1-t))/2 + 3*t/2 - 3*t^2/4 + 1 - x))} \\ Andrew Howroyd, Feb 02 2024

Formula

Logarithmic transform of A368927.
From Andrew Howroyd, Feb 02 2024: (Start)
a(n) = A000169(n) + A129271(n).
E.g.f.: log(1/(1-T(x)))/2 + 3*T(x)/2 - 3*T(x)^2/4 + 1 - x, where T(x) is the e.g.f. of A000169. (End)

Extensions

a(0) changed to 1 and a(7) onwards from Andrew Howroyd, Feb 02 2024

A062734 Triangular array T(n,k) giving number of connected graphs with n labeled nodes and k edges (n >= 1, 0 <= k <= n(n-1)/2).

Original entry on oeis.org

1, 0, 1, 0, 0, 3, 1, 0, 0, 0, 16, 15, 6, 1, 0, 0, 0, 0, 125, 222, 205, 120, 45, 10, 1, 0, 0, 0, 0, 0, 1296, 3660, 5700, 6165, 4945, 2997, 1365, 455, 105, 15, 1, 0, 0, 0, 0, 0, 0, 16807, 68295, 156555, 258125, 331506, 343140, 290745, 202755, 116175, 54257, 20349
Offset: 1

Views

Author

Vladeta Jovovic, Jul 12 2001

Keywords

Comments

T(n,n-1) = n^(n-2) counts free labeled trees A000272.
T(n,n) counts labeled connected unicyclic graphs A057500. - Geoffrey Critzer, Oct 07 2012

Examples

			Triangle starts:
[1],
[0, 1],
[0, 0, 3,  1],
[0, 0, 0, 16,  15,   6,   1],
[0, 0, 0,  0, 125, 222, 205, 120, 45, 10, 1],
...
		

References

  • Cowan, D. D.; Mullin, R. C.; Stanton, R. G. Counting algorithms for connected labelled graphs. Proceedings of the Sixth Southeastern Conference on Combinatorics, Graph Theory, and Computing (Florida Atlantic Univ., Boca Raton, Fla., 1975), pp. 225-236. Congressus Numerantium, No. XIV, Utilitas Math., Winnipeg, Man., 1975. MR0414417 (54 #2519). - N. J. A. Sloane, Apr 06 2012
  • F. Harary and E. Palmer, Graphical Enumeration, Academic Press, 1973, Page 29, Exercise 1.5.

Crossrefs

Cf. A001187 (row sums), A054924 (unlabeled case), A061540 (a subdiagonal).
See A123527 for another version (without leading zeros in each row).

Programs

  • Mathematica
    nn=6;s=Sum[(1+y)^Binomial[n,2] x^n/n!,{n,0,nn}]; Range[0,nn]!CoefficientList[Series[Log[ s]+1,{x,0,nn}],{x,y}]//Grid  (* returns triangle indexed at n = 0, Geoffrey Critzer, Oct 07 2012 *)
    T[ n_, k_] := If[ n < 0, 0, Coefficient[ n! SeriesCoefficient[ Log[ Sum[ (1 + y)^Binomial[m, 2] x^m/m!, {m, 0, n}]], {x, 0, n}], y, k]]; (* Michael Somos, Aug 12 2017 *)
  • PARI
    {T(n, k) = if( n<0, 0, n! * polcoeff( polcoeff( log( sum(m=0, n, (1 + y)^(m * (m-1)/2) * x^m/m!)), n), k))}; /* Michael Somos, Aug 12 2017 */

Formula

G.f.: Sum_{n>=1, k>=0} T(n, k) * x^n/n! * y^k = log(Sum_{n>=0} (1 + y)^binomial(n, 2) * x^n/n!). - Ralf Stephan, Jan 18 2005

A327125 Triangle read by rows where T(n,k) is the number of labeled simple graphs with n vertices and cut-connectivity k.

Original entry on oeis.org

1, 0, 1, 1, 0, 1, 4, 3, 0, 1, 26, 28, 9, 0, 1, 296, 490, 212, 25, 0, 1, 6064, 15336, 9600, 1692, 75, 0, 1, 230896
Offset: 0

Views

Author

Gus Wiseman, Aug 25 2019

Keywords

Comments

We define the cut-connectivity of a graph to be the minimum number of vertices that must be removed (along with any incident edges) to obtain a disconnected or empty graph, with the exception that a graph with one vertex and no edges has cut-connectivity 1. Except for complete graphs, this is the same as vertex-connectivity.

Examples

			Triangle begins:
    1
    0   1
    1   0   1
    4   3   0   1
   26  28   9   0   1
  296 490 212  25   0   1
		

Crossrefs

After the first column, same as A327126.
The unlabeled version is A327127.
Row sums are A006125.
Column k = 0 is A054592, if we assume A054592(0) = 1.
Column k = 1 is A327114, if we assume A327114(1) = 1.
Row sums without the first column are A001187.
Row sums without the first two columns are A013922.
Different from A327069.

Programs

  • Mathematica
    csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    cutConnSys[vts_,eds_]:=If[Length[vts]==1,1,Min@@Length/@Select[Subsets[vts],Function[del,csm[DeleteCases[DeleteCases[eds,Alternatives@@del,{2}],{}]]!={Complement[vts,del]}]]];
    Table[Length[Select[Subsets[Subsets[Range[n],{2}]],cutConnSys[Range[n],#]==k&]],{n,0,4},{k,0,n}]

Extensions

a(21)-a(28) from Robert Price, May 20 2021
a(1) and a(2) corrected by Robert Price, May 20 2021

A229048 Number of different chromatic polynomials of a simple graph with n nodes.

Original entry on oeis.org

1, 2, 4, 9, 23, 73, 304, 1954, 23075, 607507
Offset: 1

Views

Author

Eric M. Schmidt, Sep 25 2013

Keywords

Comments

Partial sums of A245883. This may be proved using two facts: (i) the number of connected components of a graph is the multiplicity of the root 0 of the chromatic polynomial (thus the chromatic polynomial determines whether a graph is connected) and (ii) a disconnected graph is chromatically equivalent to some graph with an isolated vertex. The first statement is well known. For the latter statement, see p. 65 of [Dong]. - Eric M. Schmidt, Mar 20 2015
A stable partition of a graph is a set partition of the vertices where no edge has both ends in the same block. The chromatic polynomial is given by chi_G(x) = Sum_p (x)k, where the sum is over all stable partitions of G, k is the length (number of blocks) of p, and (x)_k is the falling factorial x(x-1)(x-2)...(x-k+1). - _Gus Wiseman, Nov 24 2018

Examples

			From _Gus Wiseman_, Nov 24 2018: (Start)
The a(4) = 9 chromatic polynomials:
  -6x + 11x^2 - 6x^3 + x^4
  -4x +  8x^2 - 5x^3 + x^4
  -2x +  5x^2 - 4x^3 + x^4
  -3x +  6x^2 - 4x^3 + x^4
         2x^2 - 3x^3 + x^4
   -x +  3x^2 - 3x^3 + x^4
          x^2 - 2x^3 + x^4
                -x^3 + x^4
                       x^4
(End)
		

References

  • F. M. Dong, K. M. Koh, and K. L. Teo. Chromatic Polynomials and Chromaticity of Graphs, World Scientific Publishing Company, 2005.

Crossrefs

Programs

  • Mathematica
    spsu[,{}]:={{}};spsu[foo,set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@spsu[Select[foo,Complement[#,Complement[set,s]]=={}&],Complement[set,s]]]/@Cases[foo,{i,_}];
    falling[x_,k_]:=Product[(x-i),{i,0,k-1}];
    chromPoly[g_]:=Expand[Sum[falling[x,Length[stn]],{stn,spsu[Select[Subsets[Union@@g],Select[DeleteCases[g,{_}],Function[ed,Complement[ed,#]=={}]]=={}&],Union@@g]}]];
    simpleSpans[n_]:=simpleSpans[n]=If[n==0,{{}},Union@@Table[If[#=={},Union[ine,{{n}}],Union[Complement[ine,List/@#],{#,n}&/@#]]&/@Subsets[Range[n-1]],{ine,simpleSpans[n-1]}]];
    Table[Length[Union[chromPoly/@simpleSpans[n]]],{n,5}] (* Gus Wiseman, Nov 24 2018 *)
  • Sage
    def A229048(n):
        return len({g.chromatic_polynomial() for g in graphs(n)})
    
  • Sage
    sorted({g.chromatic_polynomial() for g in graphs(n)})

Extensions

a(10) added by Eric M. Schmidt, Mar 20 2015

A327126 Triangle read by rows where T(n,k) is the number of labeled simple graphs covering n vertices with cut-connectivity k.

Original entry on oeis.org

1, 0, 0, 0, 0, 1, 0, 3, 0, 1, 3, 28, 9, 0, 1, 40, 490, 212, 25, 0, 1, 745, 15336, 9600, 1692, 75, 0, 1
Offset: 0

Views

Author

Gus Wiseman, Aug 25 2019

Keywords

Comments

We define the cut-connectivity of a graph to be the minimum number of vertices that must be removed (along with any incident edges) to obtain a disconnected or empty graph, with the exception that a graph with one vertex and no edges has cut-connectivity 1. Except for complete graphs, this is the same as vertex-connectivity.

Examples

			Triangle begins:
   1
   0   0
   0   0   1
   0   3   0   1
   3  28   9   0   1
  40 490 212  25   0   1
		

Crossrefs

After the first column, same as A327125.
Column k = 0 is A327070.
Column k = 1 is A327114.
Row sums are A006129.
Different from A327069.
Row sums without the first column are A001187, if we assume A001187(0) = A001187(1) = 0.
Row sums without the first two columns are A013922.

Programs

  • Mathematica
    csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    cutConnSys[vts_,eds_]:=If[Length[vts]==1,1,Min@@Length/@Select[Subsets[vts],Function[del,csm[DeleteCases[DeleteCases[eds,Alternatives@@del,{2}],{}]]!={Complement[vts,del]}]]];
    Table[Length[Select[Subsets[Subsets[Range[n],{2}]],Union@@#==Range[n]&&cutConnSys[Range[n],#]==k&]],{n,0,4},{k,0,n}]

Extensions

a(21)-a(27) from Robert Price, May 20 2021
Previous Showing 31-40 of 156 results. Next