A327148
Irregular triangle read by rows with trailing zeros removed where T(n,k) is the number of labeled simple graphs with n vertices and non-spanning edge-connectivity k.
Original entry on oeis.org
1, 1, 1, 1, 1, 3, 3, 1, 4, 18, 27, 14, 1, 56, 250, 402, 240, 65, 10, 1, 1031, 5475, 11277, 9620, 4282, 921, 146, 15, 1
Offset: 0
Triangle begins:
1
1
1 1
1 3 3 1
4 18 27 14 1
56 250 402 240 65 10 1
The corresponding triangle for vertex-connectivity is
A327125.
The corresponding triangle for spanning edge-connectivity is
A327069.
Cf.
A001187,
A263296,
A322338,
A322395,
A326787,
A327079,
A327097,
A327099,
A327102,
A327126,
A327144,
A327196,
A327200,
A327201.
-
csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
edgeConnSys[sys_]:=If[Length[csm[sys]]!=1,0,Length[sys]-Max@@Length/@Select[Union[Subsets[sys]],Length[csm[#]]!=1&]];
Table[Length[Select[Subsets[Subsets[Range[n],{2}]],edgeConnSys[#]==k&]],{n,0,4},{k,0,Binomial[n,2]}]//.{foe___,0}:>{foe}
A001434
Number of graphs with n nodes and n edges.
Original entry on oeis.org
1, 0, 0, 1, 2, 6, 21, 65, 221, 771, 2769, 10250, 39243, 154658, 628635, 2632420, 11353457, 50411413, 230341716, 1082481189, 5228952960, 25945377057, 132140242356, 690238318754, 3694876952577, 20252697246580, 113578669178222, 651178533855913, 3813856010041981
Offset: 0
From _Gus Wiseman_, Feb 22 2024: (Start)
Representatives of the a(0) = 1 through a(5) = 6 graphs:
{} . . {12,13,23} {12,13,14,23} {12,13,14,15,23}
{12,13,24,34} {12,13,14,23,24}
{12,13,14,23,25}
{12,13,14,23,45}
{12,13,14,25,35}
{12,13,24,35,45}
(End)
- J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 146.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
-
(* first do *) Needs["Combinatorica`"] (* then *) Table[ NumberOfGraphs[n, n], {n, 24}] (* Robert G. Wilson v, Mar 22 2011 *)
brute[m_]:=First[Sort[Table[Sort[Sort /@ (m/.Rule@@@Table[{(Union@@m)[[i]],p[[i]]},{i,Length[p]}])], {p,Permutations[Range[Length[Union@@m]]]}]]];
Table[Length[Union[brute /@ Subsets[Subsets[Range[n],{2}],{n}]]],{n,0,5}] (* Gus Wiseman, Feb 22 2024 *)
-
a(n) = polcoef(G(n, O(x*x^n)), n) \\ G defined in A008406. - Andrew Howroyd, Feb 02 2024
A368984
Number of graphs with loops (symmetric relations) on n unlabeled vertices in which each connected component has an equal number of vertices and edges.
Original entry on oeis.org
1, 1, 2, 5, 12, 29, 75, 191, 504, 1339, 3610, 9800, 26881, 74118, 205706, 573514, 1606107, 4513830, 12727944, 35989960, 102026638, 289877828, 825273050, 2353794251, 6724468631, 19239746730, 55123700591, 158133959239, 454168562921, 1305796834570, 3758088009136
Offset: 0
Representatives of the a(3) = 5 graphs are:
{{1,2}, {1,3}, {2,3}},
{{1}, {1,2}, {1,3}},
{{1}, {1,2}, {2,3}},
{{1}, {2}, {2,3}},
{{1}, {2}, {3}}.
The graph with 4 vertices and edges {{1}, {2}, {1,2}, {3,4}} is included by A368599 but not by this sequence.
The case of a unique choice is
A000081.
The labeled version appears to be
A333331.
Cf.
A014068,
A057500,
A116508,
A129271,
A133686,
A367863,
A367869,
A367902,
A368597,
A368601,
A368836.
-
brute[m_]:=First[Sort[Table[Sort[Sort/@(m/.Rule@@@Table[{(Union@@m)[[i]],p[[i]]},{i,Length[p]}])],{p,Permutations[Range[Length[Union@@m]]]}]]];
Table[Length[Union[brute/@Select[Subsets[Subsets[Range[n],{1,2}],{n}],Length[Select[Tuples[#],UnsameQ@@#&]]!=0&]]],{n,0,5}] (* Gus Wiseman, Jan 25 2024 *)
A054592
Number of disconnected labeled graphs with n nodes.
Original entry on oeis.org
0, 0, 1, 4, 26, 296, 6064, 230896, 16886864, 2423185664, 687883494016, 387139470010624, 432380088071584256, 959252253993204724736, 4231267540316814507357184, 37138269572860613284747227136, 649037449132671895468073434916864, 22596879313063804832510513481261154304
Offset: 0
-
upto := 18: g := add(2^binomial(n, 2) * x^n / n!, n = 0..upto+1):
ser := series(g - log(g) - 1, x, upto+1):
seq(n!*coeff(ser, x, n), n = 0..upto); # Peter Luschny, Feb 24 2023
-
g=Sum[2^Binomial[n,2]x^n/n!,{n,0,20}]; Range[0,20]! CoefficientList[Series[g-Log[g]-1,{x,0,20}],x] (* Geoffrey Critzer, Nov 11 2011 *)
A317672
Regular triangle where T(n,k) is the number of clutters (connected antichains) on n + 1 vertices with k maximal blobs (2-connected components).
Original entry on oeis.org
1, 2, 3, 44, 24, 16, 4983, 940, 300, 125, 7565342, 154770, 18000, 4320, 1296, 2414249587694, 318926314, 3927105, 363580, 72030, 16807, 56130437054842366160898, 135200580256336, 10244647168, 99187200, 8028160, 1376256, 262144
Offset: 1
Triangle begins:
1
2 3
44 24 16
4983 940 300 125
7565342 154770 18000 4320 1296
Cf.
A000272,
A001187,
A002218,
A013922,
A134954,
A293510,
A317631,
A317632,
A317634,
A317635,
A317671.
-
blg={0,1,2,44,4983,7565342,2414249587694,56130437054842366160898} (* A275307 *);
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
Table[Sum[n^(k-1)*Product[blg[[Length[s]+1]],{s,spn}],{spn,Select[sps[Range[n-1]],Length[#]==k&]}],{n,Length[blg]},{k,n-1}]
A327114
Number of labeled simple graphs covering n vertices with cut-connectivity 1.
Original entry on oeis.org
0, 0, 0, 3, 28, 490, 15336, 851368, 85010976, 15615858960, 5388679220480, 3548130389657216, 4507988483733389568, 11145255551131555572992, 53964198507018134569758720, 514158235191699333805861463040
Offset: 0
Connected non-separable graphs are
A013922.
BII-numbers for cut-connectivity 1 are
A327098.
Set-systems with cut-connectivity 1 are counted by
A327197.
Labeled simple graphs with vertex-connectivity 1 are
A327336.
-
csm[s_]:=With[{c=Select[Subsets[Range[Length[s]],{2}],Length[Intersection@@s[[#]]]>0&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
cutConnSys[vts_,eds_]:=If[Length[vts]==1,1,Min@@Length/@Select[Subsets[vts],Function[del,csm[DeleteCases[DeleteCases[eds,Alternatives@@del,{2}],{}]]!={Complement[vts,del]}]]];
Table[Length[Select[Subsets[Subsets[Range[n],{2}]],Union@@#==Range[n]&&cutConnSys[Range[n],#]==1&]],{n,0,3}]
-
seq(n)={my(g=log(sum(k=0, n, 2^binomial(k, 2) * x^k / k!) + O(x*x^n))); Vec(serlaplace(g-intformal(1+log(x/serreverse(x*deriv(g))))), -(n+1))} \\ Andrew Howroyd, Sep 11 2019
A369191
Number of labeled simple graphs covering n vertices with at most n edges.
Original entry on oeis.org
1, 0, 1, 4, 34, 387, 5686, 102084, 2162168, 52693975, 1450876804, 44509105965, 1504709144203, 55563209785167, 2224667253972242, 95984473918245388, 4439157388017620554, 219067678811211857307, 11489425098298623161164, 638159082104453330569185
Offset: 0
The a(0) = 1 through a(3) = 4 graphs:
{} . {{1,2}} {{1,2},{1,3}}
{{1,2},{2,3}}
{{1,3},{2,3}}
{{1,2},{1,3},{2,3}}
This is the covering case of
A369192, or
A369193 for covered vertices.
The version for loop-graphs is
A369194.
A054548 counts graphs covering n vertices with k edges, with loops
A369199.
A057500 counts connected graphs with n vertices and n edges.
-
Table[Length[Select[Subsets[Subsets[Range[n], {2}]],Length[Union@@#]==n&&Length[#]<=n&]],{n,0,5}]
A327070
Number of non-connected simple labeled graphs covering n vertices.
Original entry on oeis.org
1, 0, 0, 0, 3, 40, 745, 21028, 973889, 80133088, 12523299729, 3847333778244, 2341705361100633, 2821794389863015840, 6728707109106848947081, 31769173063866390661714996, 297278309767391164611330317921
Offset: 0
The a(4) = 3 graphs:
{{1,2},{3,4}}
{{1,3},{2,4}}
{{1,4},{2,3}}
The non-covering version is
A327199.
-
csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
Table[Length[Select[Subsets[Subsets[Range[n],{2}]],Union@@#==Range[n]&&Length[csm[#]]!=1&]],{n,0,5}]
A327079
Number of labeled simple connected graphs covering n vertices with at least one bridge that is not an endpoint/leaf (non-spanning edge-connectivity 1).
Original entry on oeis.org
0, 0, 1, 0, 12, 180, 4200, 157920, 9673664, 1011129840, 190600639200, 67674822473280, 46325637863907072, 61746583700640860736, 161051184122415878112640, 824849999242893693424992000, 8317799170120961768715123118080
Offset: 0
The non-covering version is
A327231.
Connected bridged graphs (spanning edge-connectivity 1) are
A327071.
BII-numbers of graphs with non-spanning edge-connectivity 1 are
A327099.
Covering set-systems with non-spanning edge-connectivity 1 are
A327129.
-
csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
eConn[sys_]:=If[Length[csm[sys]]!=1,0,Length[sys]-Max@@Length/@Select[Union[Subsets[sys]],Length[csm[#]]!=1&]];
Table[Length[Select[Subsets[Subsets[Range[n],{2}]],Union@@#==Range[n]&&eConn[#]==1&]],{n,0,4}]
A343088
Triangle read by rows: T(n,k) is the number of connected labeled graphs with n edges and k vertices, 1 <= k <= n+1.
Original entry on oeis.org
1, 0, 1, 0, 0, 3, 0, 0, 1, 16, 0, 0, 0, 15, 125, 0, 0, 0, 6, 222, 1296, 0, 0, 0, 1, 205, 3660, 16807, 0, 0, 0, 0, 120, 5700, 68295, 262144, 0, 0, 0, 0, 45, 6165, 156555, 1436568, 4782969, 0, 0, 0, 0, 10, 4945, 258125, 4483360, 33779340, 100000000
Offset: 0
Triangle begins:
1;
0, 1;
0, 0, 3;
0, 0, 1, 16;
0, 0, 0, 15, 125;
0, 0, 0, 6, 222, 1296;
0, 0, 0, 1, 205, 3660, 16807;
0, 0, 0, 0, 120, 5700, 68295, 262144;
0, 0, 0, 0, 45, 6165, 156555, 1436568, 4782969;
...
Subsequent diagonals give the number of connected labeled graphs with n nodes and n+k edges for k=0..11:
A057500,
A061540,
A061541,
A061542,
A061543,
A096117,
A061544 A096150,
A096224,
A182294,
A182295,
A182371.
-
row[n_] := (SeriesCoefficient[#, {y, 0, n}]& /@ CoefficientList[ Log[Sum[x^k*(1+y)^Binomial[k, 2]/k!, {k, 0, n+1}]] + O[x]^(n+2), x]* Range[0, n+1]!) // Rest;
Table[row[n], {n, 0, 9}] // Flatten (* Jean-François Alcover, Aug 03 2022, after Andrew Howroyd *)
-
Row(n)={Vec(serlaplace(polcoef(log(O(x^2*x^n)+sum(k=0, n+1, x^k*(1 + y + O(y*y^n))^binomial(k, 2)/k!)), n, y)), -(n+1))}
{ for(n=0, 8, print(Row(n))) }
Comments