cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 39 results. Next

A378163 Triangle read by rows: T(n,k) is the number of subgroups of S_n isomorphic to S_k, where S_n is the n-th symmetric group.

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 9, 4, 1, 1, 25, 20, 5, 1, 1, 75, 160, 60, 12, 1, 1, 231, 910, 560, 84, 7, 1, 1, 763, 5936, 5740, 560, 56, 8, 1, 1, 2619, 53424, 58716, 3276, 336, 72, 9, 1, 1, 9495, 397440, 734160, 79632, 4620, 480, 90, 10, 1, 1, 35695, 3304620, 8337120, 1105104, 39732, 3300, 660, 110, 11, 1, 1, 140151, 35023120, 133212420, 16571808, 1400784, 20592, 4950, 880, 132, 12, 1, 1, 568503, 322852816, 1769490580, 176344740, 16253952, 130416, 33462, 7150, 1144, 156, 13, 1
Offset: 1

Views

Author

Jianing Song, Nov 18 2024

Keywords

Comments

The number of monomorphisms (i.e., injective homomorphisms) S_k -> S_n is thus |Aut(S_k)|*T(n,k). Note that |Aut(S_k)| = 1 for k = 2, 1440 for k = 6 and k! otherwise.
T(n,k) is related to the number of homomorphisms S_k -> S_n:
k | trivial kernel | kernel S_k (k>=2) | kernel A_k (k>=3) | kernel V (k=4) | total number
-----------+----------------+-------------------+-------------------+----------------+-------------------------
1 | 1 | - | - | - | 1
-----------+----------------+-------------------+-------------------+----------------+-------------------------
2 | b(n)-1 | 1 | - | - | b(n)
-----------+----------------+-------------------+-------------------+----------------+-------------------------
4 | 24*T(n,4) | 1 | b(n)-1 | 6*T(n,3) | 24*T(n,4)+6*T(n,3)+b(n)
-----------+----------------+-------------------+-------------------+----------------+-------------------------
6 | 1440*T(n,6) | 1 | b(n)-1 | - | 1440*T(n,6)+b(n)
-----------+----------------+-------------------+-------------------+----------------+-------------------------
3, 5, >=7 | k!*T(n,k) | 1 | b(n)-1 | - | k!*T(n,k)+b(n)
Here A_n is the n-th alternating group, V = {e, (1 2)(3 4), (1 3)(2 4), (1 4)(2 3)} is the Klein-four group in S_4, b = A000085, and T(n,k) = 0 for k > n.
In particular, the number of homomorphisms S_n -> S_n is 1 for n = 1, 2 for n = 2, 58 for n = 4, 1440 + b(6) = 1516 for n = 6, and n! + b(n) otherwise.

Examples

			Table reads
  1
  1, 1
  1, 3, 1
  1, 9, 4, 1
  1, 25, 20, 5, 1
  1, 75, 160, 60, 12, 1
  1, 231, 910, 560, 84, 7, 1
  1, 763, 5936, 5740, 560, 56, 8, 1
  1, 2619, 53424, 58716, 3276, 336, 72, 9, 1
  1, 9495, 397440, 734160, 79632, 4620, 480, 90, 10, 1
		

Crossrefs

Programs

  • GAP
    A378163 := function(n,k)
    local S;
    S := SymmetricGroup(n);
    return Sum(IsomorphicSubgroups(S,SymmetricGroup(k)),x->Index(S,Normalizer(S,Image(x))));
    end; # program given in the Math Stack Exchange link
    
  • GAP
    A378163_row_n := function(n)
    local L, C, G, N, k;
    N := ListWithIdenticalEntries( n, 0 );
    L := ConjugacyClassesSubgroups( SymmetricGroup(n) );
    for C in L do
    G := Representative(C);
    for k in [1..n] do
    if not IsomorphismGroups( G, SymmetricGroup(k) ) = fail then
    N[k] := N[k]+Size(C);
    fi;
    od;
    od;
    return N;
    end;

Formula

T(n,2) = A001189(n).

A059838 Number of permutations in the symmetric group S_n that have even order.

Original entry on oeis.org

0, 0, 1, 3, 15, 75, 495, 3465, 29295, 263655, 2735775, 30093525, 370945575, 4822292475, 68916822975, 1033752344625, 16813959537375, 285837312135375, 5214921734397375, 99083512953550125, 2004231846526284375, 42088868777051971875, 934957186489800849375
Offset: 0

Views

Author

Avi Peretz (njk(AT)netvision.net.il), Feb 25 2001

Keywords

Comments

From Bob Beals: Let P[n] = probability that a random permutation in S_n has odd order. Then P[n] = sum_k P[random perm in S_n has odd order | n is in a cycle of length k] * P[n is in a cycle of length k]. Now P[n is in a cycle of length k] = 1/n; P[random perm in S_n has odd order | k is even] = 0; P[random perm in S_n has odd order | k is odd] = P[ random perm in S_{n-k} has odd order]. So P[n] = (1/n) * sum_{k odd} P[n-k] = (1/n) P[n-1] + (1/n) sum_{k odd and >=3} P[n-k] = (1/n)*P[n-1] + ((n-2)/n)*P[n-2] and P[1] = 1, P[2] = 1/2. The solution is: P[n] = (1 - 1/2) (1 - 1/4) ... (1-1/(2*[n/2])).

Examples

			A permutation in S_4 has even order iff it is a transposition, a product of two disjoint transpositions or a 4 cycle so a(4) = C(4,2)+ C(4,2)/2 + 3! = 15.
		

Crossrefs

Programs

  • GAP
    List([1..9],n->Length(Filtered(SymmetricGroup(n),x->(Order(x) mod 2)=0)));
  • Maple
    s := series((1-sqrt(1-x^2))/(1-x), x, 21): for i from 0 to 20 do printf(`%d,`,i!*coeff(s,x,i)) od:
  • Mathematica
    a[n_] := a[n] = n! - ((n-1)! - a[n-1]) * (n+Mod[n, 2]-1); a[0] = 0; Table[a[n], {n, 0, 20}](* Jean-François Alcover, Nov 21 2011, after Pari *)
    With[{nn=20},CoefficientList[Series[(1-Sqrt[1-x^2])/(1-x),{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Aug 05 2015 *)
  • PARI
    a(n)=if(n<1,0,n!-((n-1)!-a(n-1))*(n+n%2-1))
    

Formula

E.g.f.: (1-sqrt(1-x^2))/(1-x).
a(2n) = (2n-1)! + (2n-1)a(2n-1), a(2n+1) = (2n+1)a(2n).
a(n) = n! - A000246(n). - Victor S. Miller

Extensions

Additional comments and more terms from Victor S. Miller, Feb 25 2001
Further terms and e.g.f. from Vladeta Jovovic, Feb 28 2001

A061130 Number of degree-n even permutations of order dividing 6.

Original entry on oeis.org

1, 1, 1, 3, 12, 36, 126, 666, 6588, 44892, 237996, 2204676, 26370576, 219140208, 1720782792, 19941776856, 234038005776, 2243409386256, 23225205107088, 295070141019312, 4303459657780416, 55200265166477376, 660776587455193056
Offset: 0

Views

Author

Vladeta Jovovic, Apr 14 2001

Keywords

Crossrefs

Formula

E.g.f.: 1/2*exp(x + 1/2*x^2 + 1/3*x^3 + 1/6*x^6) + 1/2*exp(x - 1/2*x^2 + 1/3*x^3 - 1/6*x^6).

A214003 Number of degree-n permutations of prime order.

Original entry on oeis.org

0, 1, 5, 17, 69, 299, 1805, 9099, 37331, 205559, 4853529, 49841615, 789513659, 9021065871, 70737031469, 420565124399, 22959075244095, 385032305178719, 10010973102879761, 152163983393187399, 1498273284120348539, 15639918041915598815, 1296204202723400597109
Offset: 1

Views

Author

Stephen A. Silver, Feb 15 2013

Keywords

Examples

			The symmetric group S_5 has 25 elements of order 2, 20 elements of order 3, and 24 elements of order 5. All other elements are of nonprime order (1, 4, or 6), so a(5) = 25 + 20 + 24 = 69.
		

Crossrefs

Programs

  • Maple
    b:= proc(n,p) option remember;
          `if`(n add(b(n, ithprime(i)), i=1..numtheory[pi](n)):
    seq(a(n), n=1..30);  # Alois P. Heinz, Feb 16 2013
    # second Maple program:
    b:= proc(n, g) option remember; `if`(n=0, `if`(isprime(g), 1, 0),
          add(b(n-j, ilcm(j, g))*(n-1)!/(n-j)!, j=1..n))
        end:
    a:= n-> b(n, 1):
    seq(a(n), n=1..23);  # Alois P. Heinz, Jan 19 2023
  • Mathematica
    f[list_] :=Total[list]!/Apply[Times, list]/Apply[Times, Map[Length, Split[list]]!]; Table[Total[Map[f, Select[Partitions[n],PrimeQ[Apply[LCM, #]] &]]], {n, 1,23}] (* Geoffrey Critzer, Nov 08 2015 *)

Formula

a(n) = Sum_{p prime} A057731(n,p).
E.g.f.: exp(x)*Sum_{p in Primes} exp(x^p/p)-1. - Geoffrey Critzer, Nov 08 2015

A061134 Number of degree-n even permutations of order exactly 8.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 226800, 2494800, 29937600, 259459200, 1816214400, 10897286400, 301491590400, 4419628012800, 51209462304000, 482551041772800, 6979977625420800, 92611036249804800, 2078225819199129600
Offset: 1

Views

Author

Vladeta Jovovic, Apr 14 2001

Keywords

Crossrefs

Formula

E.g.f.: - 1/2*exp(x + 1/2*x^2 + 1/4*x^4) - 1/2*exp(x - 1/2*x^2 - 1/4*x^4) + 1/2*exp(x + 1/2*x^2 + 1/4*x^4 + 1/8*x^8) + 1/2*exp(x - 1/2*x^2 - 1/4*x^4 - 1/8*x^8).

A061137 Number of degree-n odd permutations of order dividing 6.

Original entry on oeis.org

0, 0, 1, 3, 6, 30, 270, 1386, 6048, 46656, 387180, 2469060, 17204616, 158065128, 1903506696, 18887563800, 163657221120, 2095170230016, 30792968596368, 346564643468976, 3905503235814240, 58609511127871200, 866032039742528736
Offset: 0

Views

Author

Vladeta Jovovic, Apr 14 2001

Keywords

Crossrefs

Programs

  • Magma
    m:=30; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!( Exp(x + x^3/3)*Sinh(x^2/2 + x^6/6) )); [0,0] cat [Factorial(n+1)*b[n]: n in [1..m-2]]; // G. C. Greubel, Jul 02 2019
    
  • Maple
    Egf:= exp(x + x^3/3)*sinh(x^2/2 + x^6/6):
    S:= series(Egf,x,31):
    seq(coeff(S,x,j)*j!,j=0..30); # Robert Israel, Jul 13 2018
  • Mathematica
    With[{m=30}, CoefficientList[Series[Exp[x + x^3/3]*Sinh[x^2/2 + x^6/6], {x, 0, m}], x]*Range[0,m]!] (* Vincenzo Librandi, Jul 02 2019 *)
  • PARI
    my(x='x+O('x^30)); concat([0,0], Vec(serlaplace( exp(x + x^3/3)*sinh(x^2/2 + x^6/6) ))) \\ G. C. Greubel, Jul 02 2019
    
  • Sage
    m = 30; T = taylor(exp(x + x^3/3)*sinh(x^2/2 + x^6/6), x, 0, m); [factorial(n)*T.coefficient(x, n) for n in (0..m)] # G. C. Greubel, Jul 02 2019

Formula

E.g.f.: exp(x + x^3/3)*sinh(x^2/2 + x^6/6).
Linear recurrence of order 12 whose coefficients are polynomials in n of degree up to 15: see link. - Robert Israel, Jul 13 2018

A051684 Auxiliary sequence for calculation of number of even permutations of degree n and order exactly 2.

Original entry on oeis.org

0, -1, -3, -3, 5, 15, -21, -133, 27, 1215, 935, -12441, -23673, 138047, 469455, -1601265, -9112561, 18108927, 182135007, -161934625, -3804634785, -404007681, 83297957567
Offset: 1

Views

Author

Keywords

References

  • V. Jovovic, Some combinatorial characteristics of symmetric and alternating groups (in Russian), Belgrade, 1980, unpublished.

Crossrefs

Formula

a(n) = c(n, 2), where c(n, d)=Sum_{k=1..n} (-1)^(k+1)*(n-1)!/(n-k)! *Sum_{l:lcm{k, l}=d} c(n-k, l), c(0, 1)=1.
a(n)=2*A048099(n)-A001189(n)=A048099(n)-A001465(n) a(n)=(-1)^n*A001464(n)-1 a(n)=a(n-1)-(n-1)*(a(n-2)+1) E.g.f.: -e^x+e^(x-(1/2)*x^2) - Matthew J. White (mattjameswhite(AT)hotmail.com), Mar 02 2006
a(n) = Sum((-1)^j*n!/(2^j*j!*(n-2*j)!),j=1..floor(n/2)). - Vladeta Jovovic, Mar 06 2006

A051685 Auxiliary sequence for calculation of number of even permutations of degree n and order exactly 4.

Original entry on oeis.org

0, 0, 0, -6, -30, 0, 420, 2100, 6804, -20160, -376200, -2102760, -6606600, 53237184, 965306160, 5941244400, 12774059760, -305998041600, -5264368533216, -33983490935520, -16008359119200, 3139364813249280, 52132631033313600, 341037535726730304, -715693892444414400
Offset: 1

Views

Author

Keywords

References

  • V. Jovovic, Some combinatorial characteristics of symmetric and alternating groups (in Russian), Belgrade, 1980, unpublished.

Crossrefs

Formula

a(n) = c(n, 4), where c(n, d)=Sum_{k=1..n} (-1)^(k+1)*(n-1)!/(n-k)! *Sum_{l:lcm{k, l}=d} c(n-k, l), c(0, 1)=1.

Extensions

More terms from Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Apr 05 2003

A088042 Number of permutations in the symmetric group S_n such that the size of their conjugacy class is odd.

Original entry on oeis.org

1, 2, 4, 4, 16, 76, 232, 106, 946, 5716, 27776, 63856, 272416, 2390480, 10349536, 2027026, 34459426, 344594404, 2618916472, 10475679736, 54997260256, 568305978472, 3132225435824, 1807129471456, 12047128545376, 175289251587776, 1326384554695552
Offset: 1

Views

Author

Yuval Dekel (dekelyuval(AT)hotmail.com), Nov 02 2003

Keywords

Crossrefs

Programs

  • Maple
    a:= n-> n!*add((binomial(n-(n mod 2), 2*k) mod 2)/((n-2*k)!*k!*2^k),
            k=0..floor(n/2)):
    seq(a(n), n=1..30);  # Alois P. Heinz, May 01 2013
  • Mathematica
    a[n_] := n!*Sum[Mod[Binomial[n-Mod[n, 2], 2*k], 2]/((n-2*k)!*k!*2^k), {k, 0, Floor[n/2]}]; Table[a[n], {n, 1, 30}] (* Jean-François Alcover, Feb 17 2014, after Alois P. Heinz *)

Formula

a(n) = Sum_{k=0..floor(n/2)} n!/(n-2*k)!/k!/2^k*(C(n-(n mod 2), 2*k) mod 2). - Vladeta Jovovic, Nov 06 2003

Extensions

More terms from Vladeta Jovovic, Nov 03 2003

A143911 Triangle read by rows: T(n,k) = number of forests on n labeled nodes, where k is the maximum of the number of edges per tree (n>=1, 0<=k<=n-1).

Original entry on oeis.org

1, 1, 1, 1, 3, 3, 1, 9, 12, 16, 1, 25, 60, 80, 125, 1, 75, 330, 480, 750, 1296, 1, 231, 1680, 3920, 5250, 9072, 16807, 1, 763, 9408, 33600, 49000, 72576, 134456, 262144, 1, 2619, 56952, 254016, 598500, 762048, 1210104, 2359296, 4782969, 1, 9495, 348120
Offset: 1

Views

Author

Alois P. Heinz, Sep 04 2008

Keywords

Examples

			T(4,1) = 9, because 9 forests on 4 labeled nodes have 1 as the maximum of the number of edges per tree:
  .1-2. .1.2. .1.2. .1.2. .1.2. .1.2. .1-2. .1.2. .1.2.
  ..... ...|. ..... .|... ..\.. ../.. ..... .|.|. ..X..
  .4.3. .4.3. .4-3. .4.3. .4.3. .4.3. .4-3. .4.3. .4.3.
Triangle begins:
  1;
  1,  1;
  1,  3,   3;
  1,  9,  12,  16;
  1, 25,  60,  80, 125;
  1, 75, 330, 480, 750, 1296;
		

Crossrefs

Columns k=0-1 give: A000012, A001189.
Row sums give A001858.
Rightmost diagonal gives A000272.
Cf. A138464.

Programs

  • Maple
    A:= (n,k)-> coeff(series(exp(add(j^(j-2) *x^j/j!, j=1..k)), x, n+1), x,n)*n!: T:= (n,k)-> A(n,k+1)-A(n,k): seq(seq(T(n,k), k=0..n-1), n=1..11);
  • Mathematica
    A[n_, k_] := SeriesCoefficient[Exp[Sum[j^(j-2)*x^j/j!, {j, 1, k}]], {x, 0, n}]*n!; T[n_, k_] := A[n, k+1] - A[n, k];
    Table[T[n, k], {n, 1, 11}, {k, 0, n-1}] // Flatten (* Jean-François Alcover, May 31 2016, translated from Maple *)

Formula

See program.
Previous Showing 21-30 of 39 results. Next