cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 371 results. Next

A103367 Absolute row sums of triangle A103364, which equals the matrix inverse of the Narayana triangle (A001263).

Original entry on oeis.org

1, 2, 6, 26, 160, 1372, 15974, 245142, 4817712, 118198568, 3542890648, 127417949496, 5415490994368, 268526379444104, 15363229400769566, 1004545432884250126, 74441340170270921952, 6205992783298302119536
Offset: 2

Views

Author

Paul D. Hanna, Feb 02 2005

Keywords

Comments

The ratio of the absolute row sum to the absolute value of column 1 for row n of triangle A103364, as n grows, approaches the limit given by limit_{n->inf} Sum_{k=1,n} |A103364(n,k)| / |A103365(n)| = 4.37281937295201487280058335227924496590808747668123198019676685492873...

Crossrefs

Programs

  • PARI
    {a(n)=if(n<1,0,sum(k=1,n,abs(matrix(n,n,m,j,binomial(m-1,j-1)*binomial(m,j-1)/j)^-1)[n,k]))}

A103370 Row sums of triangle A095801 (matrix square of the Narayana triangle A001263).

Original entry on oeis.org

1, 3, 12, 57, 303, 1743, 10629, 67791, 448023, 3047745, 21235140, 150969195, 1091936745, 8016114681, 59616180828, 448459155063, 3407842605039, 26131449100821, 202011445055436, 1573171285950639, 12333030718989969
Offset: 1

Views

Author

Paul D. Hanna, Feb 02 2005

Keywords

Examples

			From _Paul D. Hanna_, Feb 01 2009: (Start)
G.f.: A(x) = 1 + 3*x + 12*x^2/3 + 57*x^3/18 + 303*x^4/180 + 1743*x^5/2700 +...+ a(n)*x^n/[n!*(n+1)!/2^n] +...
A(x) = B(x)^3 where:
B(x) = 1 + x + x^2/3 + x^3/18 + x^4/180 + x^5/2700 +...+ x^n/[n!*(n+1)!/2^n] +... (End)
		

Crossrefs

Programs

  • Mathematica
    RecurrenceTable[{(n + 1) * (n + 2) * a[n] == 2 * (5 * n^2 - 2) * a[n - 1] - 9 * (n - 2) * (n - 1) * a[n - 2], a[1] == 1, a[2] == 3}, a, {n, 21}] (* Vaclav Kotesovec, Oct 17 2012 *)
  • PARI
    {a(n)=if(n<1,0,sum(k=1,n,(matrix(n,n,m,j,binomial(m-1,j-1)*binomial(m,j-1)/j)^2)[n,k]))}
    
  • PARI
    {a(n)=local(B=sum(k=0,n,x^k/(k!*(k+1)!/2^k))+x*O(x^n));polcoeff(B^3,n)*n!*(n+1)!/2^n} \\ Paul D. Hanna, Feb 01 2009

Formula

G.f. satisfies: A(x) = B(x)^3 where A(x) = Sum_{n>=0} a(n)*x^n/[n!*(n+1)!/2^n] and B(x) = Sum_{n>=0} x^n/[n!*(n+1)!/2^n]. - Paul D. Hanna, Feb 01 2009
Recurrence: (n+1)*(n+2)*a(n) = 2*(5*n^2-2)*a(n-1) - 9*(n-2)*(n-1)*a(n-2). - Vaclav Kotesovec, Oct 17 2012
a(n) ~ 3^(2*n+5/2)/(4*Pi*n^3). - Vaclav Kotesovec, Oct 17 2012
G.f.: ((x-1)^2/(4*x*(1-9*x)^(2/3))*(-3*hypergeom([1/3, 1/3],[1],-27*x*(x-1)^2/(9*x-1)^2)+(3*x+1)^3*(9*x-1)^(-2)*hypergeom([4/3, 4/3],[2],-27*x*(x-1)^2/(9*x-1)^2)))-1+1/(2*x). - Mark van Hoeij, May 14 2013
G.f.: -(x-1)^2*hypergeom([1/3, 4/3],[2],-27*x*(x-1)^2/(9*x-1)^2)/(2*x*(1-9*x)^(2/3))-1+1/(2*x). - Mark van Hoeij, Nov 12 2023

A105556 Triangle, read by rows, such that column n equals the row sums of A001263^n, which is the n-th matrix power of the Narayana triangle A001263, for n>=0.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 5, 3, 1, 1, 14, 12, 4, 1, 1, 42, 57, 22, 5, 1, 1, 132, 303, 148, 35, 6, 1, 1, 429, 1743, 1144, 305, 51, 7, 1, 1, 1430, 10629, 9784, 3105, 546, 70, 8, 1, 1, 4862, 67791, 90346, 35505, 6906, 889, 92, 9, 1, 1, 16796, 448023, 885868, 444225, 99156
Offset: 0

Views

Author

Paul D. Hanna, Apr 14 2005

Keywords

Comments

Column 1 is the Catalan numbers A000108 (offset 1).

Examples

			Triangle begins:
  1;
  1,    1;
  1,    2,     1;
  1,    5,     3,     1;
  1,   14,    12,     4,     1;
  1,   42,    57,    22,     5,    1;
  1,  132,   303,   148,    35,    6,   1;
  1,  429,  1743,  1144,   305,   51,   7,  1;
  1, 1430, 10629,  9784,  3105,  546,  70,  8, 1;
  1, 4862, 67791, 90346, 35505, 6906, 889, 92, 9, 1;
  ...
From _Paul D. Hanna_, Feb 01 2009: (Start)
G.f. for rows n=0..3 are:
B(x) = 1 + x + x^2/3 + x^3/18 + x^4/180 + x^5/2700 + ... + x^n/[n!*(n+1)!/2^n] + ...
B(x)^2 = 1 + 2*x + 5*x^2/3 + 14*x^3/18 + 42*x^4/180 + ... + A000108(n)*x^n/[n!*(n+1)!/2^n] + ...
B(x)^3 = 1 + 3*x +12*x^2/3 + 57*x^3/18 +303*x^4/180 + ... + A103370(n)*x^n/[n!*(n+1)!/2^n] + ...
B(x)^4 = 1 + 4*x +22*x^2/3 +148*x^3/18+1144*x^4/180 + 9784*x^5/2700 + 90346*x^5/56700 + ... (End)
		

Crossrefs

Cf. A001263, A105557 (row sums), A103370 (column 2).
Cf. A155926. - Paul D. Hanna, Feb 01 2009

Programs

  • PARI
    {T(n,k)=local(N=matrix(n+1,n+1,m,j,if(m>=j, binomial(m-1,j-1)*binomial(m,j-1)/j))); sum(j=0,n-k,(N^k)[n-k+1,j+1])}
    
  • PARI
    {T(n,k)=local(B=sum(j=0,n-k,x^j/(j!*(j+1)!/2^j))+x*O(x^(n-k))); polcoeff(B^(k+1),n-k)*(n-k)!*(n-k+1)!/2^(n-k)} \\ Paul D. Hanna, Feb 01 2009

Formula

From Paul D. Hanna, Feb 01 2009: (Start)
G.f. of column k = B(x)^(k+1) where B(x) = Sum_{n>=0} x^n/[n!*(n+1)!/2^n];
T(n,K) = [x^(n-k)] B(x)^(k+1) * (n-k)!*(n-k+1)!/2^(n-k) for n >= k >= 0. (End)

A132787 Triangle read by rows: T(n,k) = 2*A001263(n,k) - 1.

Original entry on oeis.org

1, 1, 1, 1, 5, 1, 1, 11, 11, 1, 1, 19, 39, 19, 1, 1, 29, 99, 99, 29, 1, 1, 41, 209, 349, 209, 41, 1, 1, 55, 391, 979, 979, 391, 55, 1, 1, 71, 671, 2351, 3527, 2351, 671, 71, 1, 1, 89, 1079, 5039, 10583, 10583, 5039, 1079, 89, 1, 1, 109, 1649, 9899, 27719, 38807, 27719, 9899, 1649, 109, 1
Offset: 1

Views

Author

Gary W. Adamson, Aug 30 2007

Keywords

Examples

			First few rows of the triangle are:
  1;
  1, 1;
  1, 5, 1;
  1, 11, 11, 1;
  1, 19, 39, 19, 1;
  1, 29, 99, 99, 29, 1;
  ...
		

Crossrefs

Column 2 is A018387.
Row sums are A132788.
Cf. A001263.

Programs

  • PARI
    T(n,k) = if(k<=n, 2*binomial(n-1, k-1) * binomial(n, k-1) / k - 1, 0); \\ Andrew Howroyd, Aug 10 2018

Formula

Equals 2*A001263 - A000012 as infinite lower triangular matrices; where A001263 = the Narayana triangle.
T(n,k) = 2*binomial(n-1, k-1) * binomial(n, k-1) / k - 1. - Andrew Howroyd, Aug 10 2018

Extensions

a(20) corrected and terms a(56) and beyond from Andrew Howroyd, Aug 10 2018

A132818 The matrix product A127773 * A001263 of infinite lower triangular matrices.

Original entry on oeis.org

1, 3, 3, 6, 18, 6, 10, 60, 60, 10, 15, 150, 300, 150, 15, 21, 315, 1050, 1050, 315, 21, 28, 588, 2940, 4900, 2940, 588, 28, 36, 1008, 7056, 17640, 17640, 7056, 1008, 36, 45, 1620, 15120, 52920, 79380, 52920, 15120, 1620, 45, 55, 2475, 29700, 138600, 291060
Offset: 1

Views

Author

Gary W. Adamson, Sep 02 2007

Keywords

Examples

			First few rows of the triangle are:
1;
3, 3;
6, 18, 6;
10, 60, 60, 10;
15, 150, 300, 150, 15;
21, 315, 1050, 1050, 315, 21;
...
		

Crossrefs

Programs

  • Maple
    A132818 := proc(n,k)
        (n+1-k)*binomial(n+1,k)*binomial(n,k-1)/2 ;
    end proc: # R. J. Mathar, Jul 29 2015

Formula

T(n,k) = A000217(n) * A001263(n,k).
Let a(n) = A006472(n), the 'triangular' factorial numbers. Then a(n)/(a(k)*a(n-k)) produces the present triangle (with a different offset). - Peter Bala, Dec 07 2011
T(n,k) = 1/2*(n+1-k)*C(n+1,k)*C(n,k-1), for n,k >= 1. O.g.f.: x*y/((1-x-x*y)^2 - 4*x^2*y)^(3/2) = x*y + x^2*(3*y + 3*y^2) + x^3*(6*y + 18*y^2 + 6*y^3) + .... Cf. A008459 with o.g.f.: x*y/((1-x-x*y)^2 - 4*x^2*y)^(1/2). Sum {k = 1..n-1} T(n,k)*2^(n-k) = A002695(n). - Peter Bala, Apr 10 2012

Extensions

Corrected by R. J. Mathar, Jul 29 2015

A375999 Narayana numbers (A001263), sorted, duplicates removed.

Original entry on oeis.org

1, 3, 6, 10, 15, 20, 21, 28, 36, 45, 50, 55, 66, 78, 91, 105, 120, 136, 153, 171, 175, 190, 196, 210, 231, 253, 276, 300, 325, 336, 351, 378, 406, 435, 465, 490, 496, 528, 540, 561, 595, 630, 666, 703, 741, 780, 820, 825, 861, 903, 946, 990, 1035, 1081, 1128
Offset: 1

Views

Author

Pontus von Brömssen, Sep 06 2024

Keywords

Crossrefs

Programs

  • Python
    from bisect import insort
    from itertools import islice
    def A375999_generator():
        yield 1
        nkN_list = [(3, 2, 3)] # List of triples (n, k, A001263(n, k)), sorted by the last element.
        while 1:
            N0 = nkN_list[0][2]
            yield N0
            while 1:
                n, k, N = nkN_list[0]
                if N > N0: break
                del nkN_list[0]
                insort(nkN_list, (n+1, k, n*(n+1)*N//((n-k+1)*(n-k+2))), key=lambda x:x[2])
                if n == 2*k-1:
                    insort(nkN_list, (n+2, k+1, 4*n*(n+2)*N//(k+1)**2), key=lambda x:x[2])
    def A375999_list(nmax):
        return list(islice(A375999_generator(),nmax))

A376000 Numbers that can be written as a Narayana number (A001263) in at least 2 ways.

Original entry on oeis.org

1, 6, 10, 15, 21, 28, 36, 45, 50, 55, 66, 78, 91, 105, 120, 136, 153, 171, 190, 196, 210, 231, 253, 276, 300, 325, 336, 351, 378, 406, 435, 465, 490, 496, 528, 540, 561, 595, 630, 666, 703, 741, 780, 820, 825, 861, 903, 946, 990, 1035, 1081, 1128, 1176, 1210
Offset: 1

Views

Author

Pontus von Brömssen, Sep 06 2024

Keywords

Comments

All Narayana numbers A001263(n,k) with n != 2*k-1, are terms since A001263(n,k) = A001263(n,n+1-k). In particular, all positive triangular numbers except 3 are terms. Are there any other terms, i.e., is there a number A001263(2*k-1,k), k >= 2, that can be written as a Narayana number in another way? Any such number would also be a term of A376001.

Crossrefs

Programs

  • Python
    from bisect import insort
    from itertools import islice
    def A376000_generator():
        yield 1
        nkN_list = [(3, 2, 3)] # List of triples (n, k, A001263(n, k)), sorted by the last element.
        while 1:
            N0 = nkN_list[0][2]
            c = 0
            while 1:
                n, k, N = nkN_list[0]
                if N > N0:
                    if c >= 2: yield N0
                    break
                central = n==2*k-1
                c += 2-central
                del nkN_list[0]
                insort(nkN_list, (n+1, k, n*(n+1)*N//((n-k+1)*(n-k+2))), key=lambda x:x[2])
                if central:
                    insort(nkN_list, (n+2, k+1, 4*n*(n+2)*N//(k+1)**2), key=lambda x:x[2])
    def A376000_list(nmax):
        return list(islice(A376000_generator(),nmax))

A102812 a(0) = 1, a(n) = Sum_{k=1..n} A001263(n,k)*a(k-1) where A001263(n,k) are Narayana numbers.

Original entry on oeis.org

1, 1, 2, 6, 25, 136, 927, 7690, 75913, 876026, 11649009, 176389234, 3011057742, 57453864447, 1216376055329, 28390144638804, 726364328468535, 20269424489285300, 614148655197018345, 20123000681064168210, 710410428812211243412, 26932611130467463342807
Offset: 0

Views

Author

Gerald McGarvey, Feb 26 2005

Keywords

Comments

Eigensequence of A001263. - Philippe Deléham, Jun 22 2007

Crossrefs

Cf. A001263.

Programs

  • PARI
    \\ here T(n,k) is A001263.
    T(n, k) ={if(k==0, 0, binomial(n-1, k-1) * binomial(n, k-1) / k)}
    seq(n)={my(a=vector(n+1)); a[1]=1; for(n=1, n, a[n+1]=sum(k=1, n, a[k]*T(n,k))); a} \\ Andrew Howroyd, Nov 06 2019

Extensions

Terms a(12) and beyond from Andrew Howroyd, Nov 06 2019

A104711 Triangle T(n,m) = sum_{k=m..n} A001263(k,m).

Original entry on oeis.org

1, 2, 1, 3, 4, 1, 4, 10, 7, 1, 5, 20, 27, 11, 1, 6, 35, 77, 61, 16, 1, 7, 56, 182, 236, 121, 22, 1, 8, 84, 378, 726, 611, 218, 29, 1, 9, 120, 714, 1902, 2375, 1394, 365, 37, 1, 10, 165, 1254, 4422, 7667, 6686, 2885, 577, 46, 1, 11, 220, 2079, 9372, 21527, 26090, 16745
Offset: 1

Views

Author

Gary W. Adamson, Mar 19 2005

Keywords

Comments

This summation over columns of the Narayana triangle could also be defined as a multiplication
of the Narayana triangle from the left by the lower-left triangle represented by the all-1 sequence A000012.

Examples

			First few rows of the triangle are:
1;
2, 1;
3, 4, 1;
4, 10, 7, 1;
5, 20, 27, 11, 1;
6, 35, 77, 61, 16, 1;
...
		

Crossrefs

Programs

  • Python
    from sympy import binomial
    def A001263(n,m):
        return binomial(n-1,m-1)*binomial(n,m-1)//m
    def A104711(n,m):
        a = 0
        for k in range(m,n+1):
            a += A001263(k,m)
        return a
    print([A104711(n,m) for n in range(20) for m in range(1,n+1)]) # R. J. Mathar, Oct 11 2009

Formula

Row sums: sum_{m=1..n} T(n,m) = A014138(n).

Extensions

Extended by R. J. Mathar, Oct 11 2009

A118976 Triangle read by rows: T(n,k) = binomial(n-1,k-1)*binomial(n,k-1)/k + binomial(n-1,k)*binomial(n,k)/(k+1) (1 <= k <= n). In other words, to each entry of the Narayana triangle (A001263) add the entry on its right.

Original entry on oeis.org

1, 2, 1, 4, 4, 1, 7, 12, 7, 1, 11, 30, 30, 11, 1, 16, 65, 100, 65, 16, 1, 22, 126, 280, 280, 126, 22, 1, 29, 224, 686, 980, 686, 224, 29, 1, 37, 372, 1512, 2940, 2940, 1512, 372, 37, 1, 46, 585, 3060, 7812, 10584, 7812, 3060, 585, 46, 1, 56, 880, 5775, 18810, 33264, 33264, 18810, 5775, 880, 56, 1
Offset: 1

Views

Author

Gary W. Adamson, May 07 2006

Keywords

Comments

Sum of entries in row n = 2*Cat(n)-1, where Cat(n) are the Catalan numbers (A000108).
Row sums = A131428 starting (1, 3, 9, 27, 83, ...). - Gary W. Adamson, Aug 31 2007

Examples

			First few rows of the triangle:
   1;
   2,  1;
   4,  4,   1;
   7, 12,   7,  1;
  11, 30,  30, 11,  1;
  16, 65, 100, 65, 16, 1;
...
Row 4 of the triangle = (7, 12, 7, 1), derived from row 4 of the Narayana triangle, (1, 6, 6, 1): = ((1+6), (6+6), (6+1), (1)).
		

Crossrefs

Programs

  • GAP
    B:=Binomial; Flat(List([1..12], n-> List([1..n], k-> B(n-1,k-1)*B(n,k-1)/k + B(n-1,k)*B(n,k)/(k+1) ))); # G. C. Greubel, Aug 12 2019
  • Magma
    B:=Binomial; [B(n-1,k-1)*B(n,k-1)/k + B(n-1,k)*B(n,k)/(k+1): k in [1..n], n in [1..12]]; // G. C. Greubel, Aug 12 2019
    
  • Maple
    T:=(n,k)->binomial(n-1,k-1)*binomial(n,k-1)/k+binomial(n-1,k) *binomial(n,k)/ (k+1): for n from 1 to 12 do seq(T(n,k),k=1..n) od; # yields sequence in triangular form
    # Alternatively:
    gf := 1 - ((1/2)*(x + 1)*(sqrt((x*y + y - 1)^2 - 4*y^2*x) + x*y + y - 1))/(y*x):
    sery := series(gf, y, 10): coeffy := n -> expand(coeff(sery, y, n)):
    seq(print(seq(coeff(coeffy(n), x, k), k=1..n)), n=1..8); # Peter Luschny, Oct 21 2020
  • Mathematica
    With[{B=Binomial}, Table[B[n-1,k-1]*B[n,k-1]/k + B[n-1,k]*B[n,k]/(k+1), {n,12}, {k,n}]//Flatten] (* G. C. Greubel, Aug 12 2019 *)
  • PARI
    T(n,k) = b=binomial; b(n-1,k-1)*b(n,k-1)/k + b(n-1,k)*b(n,k)/(k+1);
    for(n=1,12, for(k=1,n, print1(T(n,k), ", "))) \\ G. C. Greubel, Aug 12 2019
    
  • Sage
    def T(n, k):
        b=binomial
        return b(n-1,k-1)*b(n,k-1)/k + b(n-1,k)*b(n,k)/(k+1)
    [[T(n, k) for k in (1..n)] for n in (1..12)] # G. C. Greubel, Aug 12 2019
    

Formula

G.f.: A001263(x, y)*(x + x*y) + x*y. - Vladimir Kruchinin, Oct 21 2020

Extensions

Edited by N. J. A. Sloane, Nov 29 2006
Previous Showing 21-30 of 371 results. Next