A103367
Absolute row sums of triangle A103364, which equals the matrix inverse of the Narayana triangle (A001263).
Original entry on oeis.org
1, 2, 6, 26, 160, 1372, 15974, 245142, 4817712, 118198568, 3542890648, 127417949496, 5415490994368, 268526379444104, 15363229400769566, 1004545432884250126, 74441340170270921952, 6205992783298302119536
Offset: 2
-
{a(n)=if(n<1,0,sum(k=1,n,abs(matrix(n,n,m,j,binomial(m-1,j-1)*binomial(m,j-1)/j)^-1)[n,k]))}
A103370
Row sums of triangle A095801 (matrix square of the Narayana triangle A001263).
Original entry on oeis.org
1, 3, 12, 57, 303, 1743, 10629, 67791, 448023, 3047745, 21235140, 150969195, 1091936745, 8016114681, 59616180828, 448459155063, 3407842605039, 26131449100821, 202011445055436, 1573171285950639, 12333030718989969
Offset: 1
From _Paul D. Hanna_, Feb 01 2009: (Start)
G.f.: A(x) = 1 + 3*x + 12*x^2/3 + 57*x^3/18 + 303*x^4/180 + 1743*x^5/2700 +...+ a(n)*x^n/[n!*(n+1)!/2^n] +...
A(x) = B(x)^3 where:
B(x) = 1 + x + x^2/3 + x^3/18 + x^4/180 + x^5/2700 +...+ x^n/[n!*(n+1)!/2^n] +... (End)
- Vincenzo Librandi, Table of n, a(n) for n = 1..200
- Jonathan M. Borwein, A short walk can be beautiful, 2015.
- J. M. Borwein, Adventures with the OEIS: Five sequences Tony may like, Guttmann 70th [Birthday] Meeting, 2015, revised May 2016.
- J. M. Borwein, Adventures with the OEIS: Five sequences Tony may like, Guttmann 70th [Birthday] Meeting, 2015, revised May 2016. [Cached copy, with permission]
- Jonathan M. Borwein, Armin Straub and Christophe Vignat, Densities of short uniform random walks, Part II: Higher dimensions, Preprint, 2015.
-
RecurrenceTable[{(n + 1) * (n + 2) * a[n] == 2 * (5 * n^2 - 2) * a[n - 1] - 9 * (n - 2) * (n - 1) * a[n - 2], a[1] == 1, a[2] == 3}, a, {n, 21}] (* Vaclav Kotesovec, Oct 17 2012 *)
-
{a(n)=if(n<1,0,sum(k=1,n,(matrix(n,n,m,j,binomial(m-1,j-1)*binomial(m,j-1)/j)^2)[n,k]))}
-
{a(n)=local(B=sum(k=0,n,x^k/(k!*(k+1)!/2^k))+x*O(x^n));polcoeff(B^3,n)*n!*(n+1)!/2^n} \\ Paul D. Hanna, Feb 01 2009
A105556
Triangle, read by rows, such that column n equals the row sums of A001263^n, which is the n-th matrix power of the Narayana triangle A001263, for n>=0.
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 1, 5, 3, 1, 1, 14, 12, 4, 1, 1, 42, 57, 22, 5, 1, 1, 132, 303, 148, 35, 6, 1, 1, 429, 1743, 1144, 305, 51, 7, 1, 1, 1430, 10629, 9784, 3105, 546, 70, 8, 1, 1, 4862, 67791, 90346, 35505, 6906, 889, 92, 9, 1, 1, 16796, 448023, 885868, 444225, 99156
Offset: 0
Triangle begins:
1;
1, 1;
1, 2, 1;
1, 5, 3, 1;
1, 14, 12, 4, 1;
1, 42, 57, 22, 5, 1;
1, 132, 303, 148, 35, 6, 1;
1, 429, 1743, 1144, 305, 51, 7, 1;
1, 1430, 10629, 9784, 3105, 546, 70, 8, 1;
1, 4862, 67791, 90346, 35505, 6906, 889, 92, 9, 1;
...
From _Paul D. Hanna_, Feb 01 2009: (Start)
G.f. for rows n=0..3 are:
B(x) = 1 + x + x^2/3 + x^3/18 + x^4/180 + x^5/2700 + ... + x^n/[n!*(n+1)!/2^n] + ...
B(x)^2 = 1 + 2*x + 5*x^2/3 + 14*x^3/18 + 42*x^4/180 + ... + A000108(n)*x^n/[n!*(n+1)!/2^n] + ...
B(x)^3 = 1 + 3*x +12*x^2/3 + 57*x^3/18 +303*x^4/180 + ... + A103370(n)*x^n/[n!*(n+1)!/2^n] + ...
B(x)^4 = 1 + 4*x +22*x^2/3 +148*x^3/18+1144*x^4/180 + 9784*x^5/2700 + 90346*x^5/56700 + ... (End)
-
{T(n,k)=local(N=matrix(n+1,n+1,m,j,if(m>=j, binomial(m-1,j-1)*binomial(m,j-1)/j))); sum(j=0,n-k,(N^k)[n-k+1,j+1])}
-
{T(n,k)=local(B=sum(j=0,n-k,x^j/(j!*(j+1)!/2^j))+x*O(x^(n-k))); polcoeff(B^(k+1),n-k)*(n-k)!*(n-k+1)!/2^(n-k)} \\ Paul D. Hanna, Feb 01 2009
A132787
Triangle read by rows: T(n,k) = 2*A001263(n,k) - 1.
Original entry on oeis.org
1, 1, 1, 1, 5, 1, 1, 11, 11, 1, 1, 19, 39, 19, 1, 1, 29, 99, 99, 29, 1, 1, 41, 209, 349, 209, 41, 1, 1, 55, 391, 979, 979, 391, 55, 1, 1, 71, 671, 2351, 3527, 2351, 671, 71, 1, 1, 89, 1079, 5039, 10583, 10583, 5039, 1079, 89, 1, 1, 109, 1649, 9899, 27719, 38807, 27719, 9899, 1649, 109, 1
Offset: 1
First few rows of the triangle are:
1;
1, 1;
1, 5, 1;
1, 11, 11, 1;
1, 19, 39, 19, 1;
1, 29, 99, 99, 29, 1;
...
-
T(n,k) = if(k<=n, 2*binomial(n-1, k-1) * binomial(n, k-1) / k - 1, 0); \\ Andrew Howroyd, Aug 10 2018
a(20) corrected and terms a(56) and beyond from
Andrew Howroyd, Aug 10 2018
A132818
The matrix product A127773 * A001263 of infinite lower triangular matrices.
Original entry on oeis.org
1, 3, 3, 6, 18, 6, 10, 60, 60, 10, 15, 150, 300, 150, 15, 21, 315, 1050, 1050, 315, 21, 28, 588, 2940, 4900, 2940, 588, 28, 36, 1008, 7056, 17640, 17640, 7056, 1008, 36, 45, 1620, 15120, 52920, 79380, 52920, 15120, 1620, 45, 55, 2475, 29700, 138600, 291060
Offset: 1
First few rows of the triangle are:
1;
3, 3;
6, 18, 6;
10, 60, 60, 10;
15, 150, 300, 150, 15;
21, 315, 1050, 1050, 315, 21;
...
-
A132818 := proc(n,k)
(n+1-k)*binomial(n+1,k)*binomial(n,k-1)/2 ;
end proc: # R. J. Mathar, Jul 29 2015
A375999
Narayana numbers (A001263), sorted, duplicates removed.
Original entry on oeis.org
1, 3, 6, 10, 15, 20, 21, 28, 36, 45, 50, 55, 66, 78, 91, 105, 120, 136, 153, 171, 175, 190, 196, 210, 231, 253, 276, 300, 325, 336, 351, 378, 406, 435, 465, 490, 496, 528, 540, 561, 595, 630, 666, 703, 741, 780, 820, 825, 861, 903, 946, 990, 1035, 1081, 1128
Offset: 1
-
from bisect import insort
from itertools import islice
def A375999_generator():
yield 1
nkN_list = [(3, 2, 3)] # List of triples (n, k, A001263(n, k)), sorted by the last element.
while 1:
N0 = nkN_list[0][2]
yield N0
while 1:
n, k, N = nkN_list[0]
if N > N0: break
del nkN_list[0]
insort(nkN_list, (n+1, k, n*(n+1)*N//((n-k+1)*(n-k+2))), key=lambda x:x[2])
if n == 2*k-1:
insort(nkN_list, (n+2, k+1, 4*n*(n+2)*N//(k+1)**2), key=lambda x:x[2])
def A375999_list(nmax):
return list(islice(A375999_generator(),nmax))
A376000
Numbers that can be written as a Narayana number (A001263) in at least 2 ways.
Original entry on oeis.org
1, 6, 10, 15, 21, 28, 36, 45, 50, 55, 66, 78, 91, 105, 120, 136, 153, 171, 190, 196, 210, 231, 253, 276, 300, 325, 336, 351, 378, 406, 435, 465, 490, 496, 528, 540, 561, 595, 630, 666, 703, 741, 780, 820, 825, 861, 903, 946, 990, 1035, 1081, 1128, 1176, 1210
Offset: 1
-
from bisect import insort
from itertools import islice
def A376000_generator():
yield 1
nkN_list = [(3, 2, 3)] # List of triples (n, k, A001263(n, k)), sorted by the last element.
while 1:
N0 = nkN_list[0][2]
c = 0
while 1:
n, k, N = nkN_list[0]
if N > N0:
if c >= 2: yield N0
break
central = n==2*k-1
c += 2-central
del nkN_list[0]
insort(nkN_list, (n+1, k, n*(n+1)*N//((n-k+1)*(n-k+2))), key=lambda x:x[2])
if central:
insort(nkN_list, (n+2, k+1, 4*n*(n+2)*N//(k+1)**2), key=lambda x:x[2])
def A376000_list(nmax):
return list(islice(A376000_generator(),nmax))
A102812
a(0) = 1, a(n) = Sum_{k=1..n} A001263(n,k)*a(k-1) where A001263(n,k) are Narayana numbers.
Original entry on oeis.org
1, 1, 2, 6, 25, 136, 927, 7690, 75913, 876026, 11649009, 176389234, 3011057742, 57453864447, 1216376055329, 28390144638804, 726364328468535, 20269424489285300, 614148655197018345, 20123000681064168210, 710410428812211243412, 26932611130467463342807
Offset: 0
-
\\ here T(n,k) is A001263.
T(n, k) ={if(k==0, 0, binomial(n-1, k-1) * binomial(n, k-1) / k)}
seq(n)={my(a=vector(n+1)); a[1]=1; for(n=1, n, a[n+1]=sum(k=1, n, a[k]*T(n,k))); a} \\ Andrew Howroyd, Nov 06 2019
A104711
Triangle T(n,m) = sum_{k=m..n} A001263(k,m).
Original entry on oeis.org
1, 2, 1, 3, 4, 1, 4, 10, 7, 1, 5, 20, 27, 11, 1, 6, 35, 77, 61, 16, 1, 7, 56, 182, 236, 121, 22, 1, 8, 84, 378, 726, 611, 218, 29, 1, 9, 120, 714, 1902, 2375, 1394, 365, 37, 1, 10, 165, 1254, 4422, 7667, 6686, 2885, 577, 46, 1, 11, 220, 2079, 9372, 21527, 26090, 16745
Offset: 1
First few rows of the triangle are:
1;
2, 1;
3, 4, 1;
4, 10, 7, 1;
5, 20, 27, 11, 1;
6, 35, 77, 61, 16, 1;
...
-
from sympy import binomial
def A001263(n,m):
return binomial(n-1,m-1)*binomial(n,m-1)//m
def A104711(n,m):
a = 0
for k in range(m,n+1):
a += A001263(k,m)
return a
print([A104711(n,m) for n in range(20) for m in range(1,n+1)]) # R. J. Mathar, Oct 11 2009
A118976
Triangle read by rows: T(n,k) = binomial(n-1,k-1)*binomial(n,k-1)/k + binomial(n-1,k)*binomial(n,k)/(k+1) (1 <= k <= n). In other words, to each entry of the Narayana triangle (A001263) add the entry on its right.
Original entry on oeis.org
1, 2, 1, 4, 4, 1, 7, 12, 7, 1, 11, 30, 30, 11, 1, 16, 65, 100, 65, 16, 1, 22, 126, 280, 280, 126, 22, 1, 29, 224, 686, 980, 686, 224, 29, 1, 37, 372, 1512, 2940, 2940, 1512, 372, 37, 1, 46, 585, 3060, 7812, 10584, 7812, 3060, 585, 46, 1, 56, 880, 5775, 18810, 33264, 33264, 18810, 5775, 880, 56, 1
Offset: 1
First few rows of the triangle:
1;
2, 1;
4, 4, 1;
7, 12, 7, 1;
11, 30, 30, 11, 1;
16, 65, 100, 65, 16, 1;
...
Row 4 of the triangle = (7, 12, 7, 1), derived from row 4 of the Narayana triangle, (1, 6, 6, 1): = ((1+6), (6+6), (6+1), (1)).
-
B:=Binomial; Flat(List([1..12], n-> List([1..n], k-> B(n-1,k-1)*B(n,k-1)/k + B(n-1,k)*B(n,k)/(k+1) ))); # G. C. Greubel, Aug 12 2019
-
B:=Binomial; [B(n-1,k-1)*B(n,k-1)/k + B(n-1,k)*B(n,k)/(k+1): k in [1..n], n in [1..12]]; // G. C. Greubel, Aug 12 2019
-
T:=(n,k)->binomial(n-1,k-1)*binomial(n,k-1)/k+binomial(n-1,k) *binomial(n,k)/ (k+1): for n from 1 to 12 do seq(T(n,k),k=1..n) od; # yields sequence in triangular form
# Alternatively:
gf := 1 - ((1/2)*(x + 1)*(sqrt((x*y + y - 1)^2 - 4*y^2*x) + x*y + y - 1))/(y*x):
sery := series(gf, y, 10): coeffy := n -> expand(coeff(sery, y, n)):
seq(print(seq(coeff(coeffy(n), x, k), k=1..n)), n=1..8); # Peter Luschny, Oct 21 2020
-
With[{B=Binomial}, Table[B[n-1,k-1]*B[n,k-1]/k + B[n-1,k]*B[n,k]/(k+1), {n,12}, {k,n}]//Flatten] (* G. C. Greubel, Aug 12 2019 *)
-
T(n,k) = b=binomial; b(n-1,k-1)*b(n,k-1)/k + b(n-1,k)*b(n,k)/(k+1);
for(n=1,12, for(k=1,n, print1(T(n,k), ", "))) \\ G. C. Greubel, Aug 12 2019
-
def T(n, k):
b=binomial
return b(n-1,k-1)*b(n,k-1)/k + b(n-1,k)*b(n,k)/(k+1)
[[T(n, k) for k in (1..n)] for n in (1..12)] # G. C. Greubel, Aug 12 2019
Comments