cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 59 results. Next

A317017 Expansion of Product_{k>=1} 1/(1 - x^k)^((3*k+1)*binomial(k+2,3)/4).

Original entry on oeis.org

1, 1, 8, 33, 126, 441, 1571, 5338, 17900, 58359, 187134, 588966, 1826537, 5580784, 16831549, 50135506, 147650112, 430187724, 1240908651, 3545808444, 10042128414, 28201458999, 78567720054, 217225969695, 596254164090, 1625343030654, 4401332943214, 11843216471115, 31674767502610
Offset: 0

Views

Author

Ilya Gutkovskiy, Jul 19 2018

Keywords

Comments

Euler transform of A001296.

Crossrefs

Programs

  • Maple
    a:=series(mul(1/(1-x^k)^((3*k+1)*binomial(k+2,3)/4),k=1..100),x=0,29): seq(coeff(a,x,n),n=0..28); # Paolo P. Lava, Apr 02 2019
  • Mathematica
    nmax = 28; CoefficientList[Series[Product[1/(1 - x^k)^((3 k + 1) Binomial[k + 2, 3]/4), {k, 1, nmax}], {x, 0, nmax}], x]
    nmax = 28; CoefficientList[Series[Exp[Sum[x^k (1 + 2 x^k)/(k (1 - x^k)^5), {k, 1, nmax}]], {x, 0, nmax}], x]
    a[n_] := a[n] = If[n == 0, 1, Sum[Sum[d^2 (d + 1) (d + 2) (3 d + 1)/24, {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[a[n], {n, 0, 28}]

Formula

G.f.: Product_{k>=1} 1/(1 - x^k)^A001296(k).
G.f.: exp(Sum_{k>=1} x^k*(1 + 2*x^k)/(k*(1 - x^k)^5)).
a(n) ~ Pi^(1/288)/(2 * 3^(577/864) * 7^(145/1728) * n^(1009/1728)) * exp(1/144 - (1/12-Zeta'(-1))/12 - (11 * Zeta(3))/(80 * Pi^2) + (1383 * Zeta(5))/(640 * Pi^4) + (11025 * Zeta(3) * Zeta(5)^2)/(2 * Pi^12) - (694575 * Zeta(5)^3)/(2 * Pi^14) + (13127467500 * Zeta(5)^5)/Pi^24 + (5 * Zeta'(-3))/12 + ((-21 * 3^(1/3) * 7^(1/6) * Pi)/6400 - (35 * 3^(1/3) * 7^(1/6) * Zeta(3) * Zeta(5))/(2 * Pi^7) + (15435 * 3^(1/3) * 7^(1/6) * Zeta(5)^2)/(16 * Pi^9) - (175573125 * 3^(1/3) * 7^(1/6) * Zeta(5)^4)/(4 * Pi^19)) * n^(1/6) + (((7/3)^(1/3) * Zeta(3))/(4 * Pi^2) - (21 * 3^(2/3) * 7^(1/3) * Zeta(5))/(8 * Pi^4) + (147000 * 3^(2/3) * 7^(1/3) * Zeta(5)^3)/Pi^14) * n^(1/3) + ((sqrt(7) * Pi)/40 - (1575 * sqrt(7) * Zeta(5)^2)/Pi^9) * sqrt(n) + ((15 * 3^(1/3) * 7^(2/3) * Zeta(5))/(2 * Pi^4)) * n^(2/3) + ((2 * 3^(2/3) * Pi)/(5 * 7^(1/6))) * n^(5/6)). - Vaclav Kotesovec, Jul 28 2018

A321450 Numbers that are sums of consecutive pentagonal pyramidal numbers (A002411).

Original entry on oeis.org

0, 1, 6, 7, 18, 24, 25, 40, 58, 64, 65, 75, 115, 126, 133, 139, 140, 196, 201, 241, 259, 265, 266, 288, 322, 397, 405, 437, 455, 461, 462, 484, 550, 610, 685, 693, 725, 726, 743, 749, 750, 889, 936, 955, 1015, 1090, 1130, 1148, 1154, 1155, 1183, 1243, 1276, 1439
Offset: 1

Views

Author

Ilya Gutkovskiy, Dec 21 2018

Keywords

Crossrefs

A365668 G.f. A(x) satisfies: A(x) = x * (1 + A(x))^5 / (1 - 2 * A(x)).

Original entry on oeis.org

0, 1, 7, 73, 905, 12354, 179305, 2715192, 42414021, 678476755, 11058588574, 182999237590, 3066447596459, 51926183715280, 887204891847960, 15276037569668880, 264797324173666845, 4617195655522976361, 80930337327794271445, 1425171253004955494215, 25202145191953299213490
Offset: 0

Views

Author

Ilya Gutkovskiy, Sep 26 2023

Keywords

Comments

Reversion of g.f. for 4-dimensional figurate numbers A001296 (with signs).

Crossrefs

Programs

  • Mathematica
    nmax = 20; A[] = 0; Do[A[x] = x (1 + A[x])^5/(1 - 2 A[x]) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
    CoefficientList[InverseSeries[Series[x (1 - 2 x)/(1 + x)^5, {x, 0, 20}], x], x]	
    Join[{0}, Table[1/n Sum[Binomial[n + k - 1, k] Binomial[5 n, n - k - 1] 2^k, {k, 0, n - 1}], {n, 1, 20}]]

Formula

a(n) = (1/n) * Sum_{k=0..n-1} binomial(n+k-1,k) * binomial(5*n,n-k-1) * 2^k for n > 0.
a(n) ~ sqrt(32 - 19*sqrt(5/2)) * 3^(4*n - 3/2) * 5^(3*n) / (sqrt(Pi) * n^(3/2) * 2^(2*n + 3/2) * (25 + 34*sqrt(10))^n). - Vaclav Kotesovec, Sep 27 2023

A373449 Number A(n,k) of (binary) heaps of length n whose element set is a subset of [k]; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 3, 3, 1, 0, 1, 4, 6, 5, 1, 0, 1, 5, 10, 14, 7, 1, 0, 1, 6, 15, 30, 25, 11, 1, 0, 1, 7, 21, 55, 65, 53, 16, 1, 0, 1, 8, 28, 91, 140, 173, 100, 26, 1, 0, 1, 9, 36, 140, 266, 448, 400, 222, 36, 1, 0, 1, 10, 45, 204, 462, 994, 1225, 1122, 386, 56, 1, 0
Offset: 0

Views

Author

Alois P. Heinz, Jun 05 2024

Keywords

Comments

These heaps may contain repeated elements.

Examples

			A(3,1) = 1: 111.
A(3,2) = 5: 111, 211, 212, 221, 222.
A(3,3) = 14: 111, 211, 212, 221, 222, 311, 312, 313, 321, 322, 323, 331, 332, 333.
(The examples use max-heaps.)
Square array A(n,k) begins:
  1, 1,  1,   1,    1,     1,     1,     1,      1, ...
  0, 1,  2,   3,    4,     5,     6,     7,      8, ...
  0, 1,  3,   6,   10,    15,    21,    28,     36, ...
  0, 1,  5,  14,   30,    55,    91,   140,    204, ...
  0, 1,  7,  25,   65,   140,   266,   462,    750, ...
  0, 1, 11,  53,  173,   448,   994,  1974,   3606, ...
  0, 1, 16, 100,  400,  1225,  3136,  7056,  14400, ...
  0, 1, 26, 222, 1122,  4147, 12428, 32028,  73644, ...
  0, 1, 36, 386, 2336, 10036, 34242, 98922, 251922, ...
		

Crossrefs

Columns k=0-2 give: A000007, A000012, A091980(n+1).
Rows n=0-6 give: A000012, A001477, A000217, A000330, A001296, A207361, A001249(k-1).
Main diagonal gives A373450.
Cf. A373451.

Programs

  • Maple
    A:= proc(n, k) option remember; `if`(n=0, 1,
         (g-> (f-> add(A(f, j)*A(n-1-f, j), j=1..k)
                 )(min(g-1, n-g/2)))(2^ilog2(n)))
        end:
    seq(seq(A(n, d-n), n=0..d), d=0..12);
  • Mathematica
    A[n_, k_] := A[n, k] = If[n == 0, 1,
       Function[g, Function[f, Sum[A[f, j]*A[n-1-f, j], {j, 1, k}]][
       Min[g-1, n-g/2]]][2^(Length[IntegerDigits[n, 2]]-1)]];
    Table[Table[A[n, d-n], {n, 0, d}], {d, 0, 12}] // Flatten (* Jean-François Alcover, Jun 08 2024, after Alois P. Heinz *)

Formula

A(n,k) = Sum_{j=0..k} binomial(k,j) * A373451(n,k-j).

A104634 Triangle T(n,k) = (k-1-n)*(k-2-n)*(k+2*n)/6, 1<=k<=n.

Original entry on oeis.org

1, 5, 2, 14, 8, 3, 30, 20, 11, 4, 55, 40, 26, 14, 5, 91, 70, 50, 32, 17, 6, 140, 112, 85, 60, 38, 20, 7, 204, 168, 133, 100, 70, 44, 23, 8, 285, 240, 196, 154, 115, 80, 50, 26, 9, 385, 330, 276, 224, 175, 130, 90, 56, 29, 10, 506, 440, 375, 312, 252, 196, 145, 100, 62, 32, 11, 650, 572, 495, 420, 348, 280, 217, 160, 110, 68, 35, 12, 819, 728, 638, 550, 465, 384
Offset: 1

Views

Author

Gary W. Adamson, Mar 18 2005

Keywords

Examples

			The first few rows are:
1;
5, 2;
14, 8, 3;
30, 20, 11, 4;
55, 40, 26, 14, 5;
91, 70, 50, 32, 17, 6;
...
		

Crossrefs

Cf. A000330 (column 1), A007290 (column 2), A051925 (column 3), A001296 (row sums), A104633, A000332.

Programs

  • Magma
    [[(k-1-n)*(k-2-n)*(k+2*n)/6: k in [1..n]]: n in [1..20]]; // G. C. Greubel, Aug 12 2018
  • Maple
    A104634 := proc(n,k) (k-1-n)*(k-2-n)*(k+2*n)/6 ; end proc:
    seq(seq(A104634(n,k),k=1..n),n=1..15) ; # R. J. Mathar, Aug 31 2011
  • Mathematica
    Table[(k-1-n)*(k-2-n)*(k+2*n)/6, {n, 1, 20}, {k, 1, n}] // Flatten (* G. C. Greubel, Aug 12 2018 *)
  • PARI
    for(n=1,20, for(k=1,n, print1((k-1-n)*(k-2-n)*(k+2*n)/6, ", "))) \\ G. C. Greubel, Aug 12 2018
    

Formula

The triangle is created by the matrix product A002260 * A004736, both infinite lower triangular matrices.

Extensions

Definition in closed form provided by R. J. Mathar, Aug 31 2011

A135857 Partial sums triangle based on A016777. Riordan convolution triangle ((1 + 2*x)/(1-x)^2, x/(1-x)).

Original entry on oeis.org

1, 4, 1, 7, 5, 1, 10, 12, 6, 1, 13, 22, 18, 7, 1, 16, 35, 40, 25, 8, 1, 19, 51, 75, 65, 33, 9, 1, 22, 70, 126, 140, 98, 42, 10, 1, 25, 92, 196, 266, 238, 140, 52, 11, 1, 28, 117, 288, 462, 504, 378, 192, 63, 12, 1
Offset: 0

Views

Author

Gary W. Adamson, Dec 01 2007

Keywords

Comments

A007318 * a bidiagonal matrix with all 1's in the main diagonal and all 3's in the subdiagonal.
Row sums give A036563(n+2), n >= 0.
From Wolfdieter Lang, Mar 23 2015: (Start)
This is the triangle of iterated partial sums of A016777. Such iterated partial sums of arithmetic progression sequences have been considered by Narayana Pandit (see the Mar 20 2015 comment on A000580 where the MacTutor History of Mathematics archive link and the Gottwald et al. reference, p. 338, are given).
This is therefore the Riordan triangle ((1+2*x)/(1-x)^2, x/(1-x)) with o.g.f. of the columns ((1+2*x)/(1-x)^2)*(x/(1-x))^k, k >= 0.
The column sequences are A016777, A000326, A002411, A001296, A051836, A051923, A050494, A053367, A053310, for k = 0..8.
The alternating row sums are A122553(n) = {1, repeat(3)}.
The Riordan A-sequence is A(y) = 1 + y (implying the Pascal triangle recurrence for k >= 1).
The Riordan Z-sequence is A256096, leading to a recurrence for T(n,0) given in the formula section. See the link "Sheffer a- and z-sequences" under A006232 also for Riordan A- and Z-sequences with references. (End)
When the first column (k = 0) is removed from this triangle, the result is A125232. - Georg Fischer, Jul 26 2023

Examples

			The triangle T(n, k) begins:
n\k  0   1   2    3    4    5    6   7   8  9 10 11
0:   1
1:   4   1
2:   7   5   1
3:  10  12   6    1
4:  13  22  18    7    1
5:  16  35  40   25    8    1
6:  19  51  75   65   33    9    1
7:  22  70 126  140   98   42   10   1
8:  25  92 196  266  238  140   52  11   1
9:  28 117 288  462  504  378  192  63  12  1
10: 31 145 405  750  966  882  570 255  75 13  1
11: 34 176 550 1155 1716 1848 1452 825 330 88 14  1
... reformatted and extended by _Wolfdieter Lang_, Mar 23 2015
From _Wolfdieter Lang_, Mar 23 2015: (Start)
T(3, 1) = T(2, 0) + T(2, 1) = 7 + 5 = 12 (Pascal, from the A-sequence given above).
T(4, 0) = 4*T(3, 0) - 9*T(3, 1) + 27*T(3, 2) - 81* T(3, 3) = 4*10 - 9*12 + 27*6 - 81*1 = 13, from the Z-sequence given above and in A256096.
T(4, 0) = 2*T(3, 0) - T(2, 0) = 2*10 - 7 = 13.
(End)
		

Crossrefs

Formula

Binomial transform of an infinite lower triangular matrix with all 1's in the main diagonal and all 3's in the subdiagonal; i.e., by columns - every column = (1, 3, 0, 0, 0, ...).
T(n,k) = (3n-2k+1)*binomial(n+1,k+1)/(n+1). - Philippe Deléham, Feb 08 2009
From Wolfdieter Lang, Mar 23 2015: (Start)
O.g.f. for row polynomials: (1 + 2*z)/((1- z*(1 + x))*(1 - z)) (see the Riordan property from the comment).
O.g.f. for column k (without leading zeros): (1 + 2*x)/(1-x)^(2+k), k >= 0, (Riordan property).
T(n, k) = T(n-1, k-1) + T(n-1, k) for k >= 1. From the Riordan A-sequence given above in a comment.
T(n, 0) = Sum_{j=0..n} Z(j)*T(n-1, j), for n >= 1, from the Riordan Z-sequence A256096 mentioned above in a comment. Of course, T(n, 0) = 2*T(n-1, 0) - T(n-2, 0) for n >= 2 (see A016777).
(End)

Extensions

Edited. Offset is 0 from the old name and the Philippe Deléham formula. New name, old name as first comment. - Wolfdieter Lang, Mar 23 2015

A228317 The hyper-Wiener index of the triangular graph T(n) (n >= 1).

Original entry on oeis.org

0, 0, 3, 21, 75, 195, 420, 798, 1386, 2250, 3465, 5115, 7293, 10101, 13650, 18060, 23460, 29988, 37791, 47025, 57855, 70455, 85008, 101706, 120750, 142350, 166725, 194103, 224721, 258825, 296670, 338520, 384648, 435336, 490875, 551565, 617715, 689643
Offset: 1

Views

Author

Emeric Deutsch, Aug 26 2013

Keywords

Comments

The triangular graph T(n) is the graph whose vertices represent the 2-subsets of {1,2,...,n} and two vertices are adjacent provided the corresponding 2-subsets have a nonempty intersection.
The triangular graph T(n) is a strongly regular graph with parameters n*(n-1)/2, 2*(n-2), n-2, and 4 (see the Brualdi and Ryser reference, Theorem 5.2.4).

References

  • R. A. Brualdi and H. J. Ryser, Combinatorial Matrix Theory, Cambridge Univ. Press, 1992.

Crossrefs

Programs

  • Maple
    a := proc (n) options operator, arrow: (1/8)*n*(n-1)*(n-2)*(3*n-5) end proc: seq(a(n), n = 1 .. 38);
  • Mathematica
    LinearRecurrence[{5,-10,10,-5,1},{0,0,3,21,75},40] (* Harvey P. Dale, Feb 23 2023 *)

Formula

a(n) = n*(n - 1)*(n - 2)*(3*n - 5)/8.
G.f.: 3*x^3*(1 + 2*x)/(1 - x)^5.
The Hosoya-Wiener polynomial of T(n) is (1/8)*n*(n - 1)*(4 + 4*(n-2)*t + (n - 2)*(n - 3)*t^2).
a(n) = 3*A001296(n-2) for n >= 2. - R. J. Mathar, Mar 05 2017

A086689 a(n) = Sum_{i=1..n} i^2*t(i), where t = A000217.

Original entry on oeis.org

1, 13, 67, 227, 602, 1358, 2730, 5034, 8679, 14179, 22165, 33397, 48776, 69356, 96356, 131172, 175389, 230793, 299383, 383383, 485254, 607706, 753710, 926510, 1129635, 1366911, 1642473, 1960777, 2326612, 2745112
Offset: 1

Views

Author

Jon Perry, Jul 28 2003

Keywords

Comments

This sequence is related to A001296 by a(n) = n*A001296(n) - Sum_{i=0..n-1} A001296(i) with n>0. - Bruno Berselli, Jan 21 2013

Examples

			a(4) = 227 = 1^2*A000217(1)+2^2*A000217(2)+3^2*A000217(3)+4^2*A000217(4).
		

Crossrefs

Cf. A001296.

Programs

  • Magma
    [n*(n+1)*(n+2)*(12*n^2+9*n-1)/120 : n in [1..40]]; // Wesley Ivan Hurt, Nov 19 2014
  • Maple
    A086689:=n->n*(n+1)*(n+2)*(12*n^2+9*n-1)/120: seq(A086689(n), n=1..40); # Wesley Ivan Hurt, Nov 19 2014
  • Mathematica
    Table[n (n + 1) (n + 2) (12 n^2 + 9 n - 1)/120, {n, 40}] (* Wesley Ivan Hurt, Nov 19 2014 *)
    CoefficientList[Series[(1 + 7 x + 4 x^2) / (x - 1)^6, {x, 0, 50}], x] (* Vincenzo Librandi, Nov 20 2014 *)
  • PARI
    t(n)=n*(n+1)/2 for(i=1,30,print1(","sum(j=1,i,j^2*t(i))))
    

Formula

a(n) = n*(n+1)*(n+2)*(12*n^2+9*n-1)/120.
G.f.: x*(1+7*x+4*x^2) / (x-1)^6. - R. J. Mathar, Sep 15 2012
a(n) = 6*a(n-1)-15*a(n-2)+20*a(n-3)-15*a(n-4)+6*a(n-5)-a(n-6). - Wesley Ivan Hurt, Nov 19 2014
a(n) = Sum_{i=1..n} ( i*Sum_{k=1..i} i*k ). - Wesley Ivan Hurt, Nov 19 2014

A095729 A002260 squared, as an infinite lower triangular matrix, read by rows.

Original entry on oeis.org

1, 3, 4, 6, 10, 9, 10, 18, 21, 16, 15, 28, 36, 36, 25, 21, 40, 54, 60, 55, 36, 28, 54, 75, 88, 90, 78, 49, 36, 70, 99, 120, 130, 126, 105, 64, 45, 88, 126, 156, 175, 180, 168, 136, 81, 55, 108, 156, 196, 225, 240, 238, 216, 171, 100, 66, 130, 189, 240, 280, 306, 315, 304
Offset: 1

Views

Author

Gary W. Adamson, Jun 05 2004, Feb 17 2007

Keywords

Comments

Sum of terms in n-th row = A001296(n-1).
By columns, k; even columns sequences as f(x), x = 1, 2, 3...; = (k/2)x^2 + (k^2 - k/2)x. For example, terms in row 2, (A028552): 4, 10, 18, 28, 40...= x^2 + 3x; row 4 = 2x^2 + 14x, row 6 = 3x^2 + 33x, row 8 = 4x^2 + 60x...etc.
The number in the i-th row and j-th column (j<=i) of the squared matrix is j*(binomial[i + 1, 2] - binomial[j, 2]). - Keith Schneider (schneidk(AT)email.unc.edu), Jul 23 2007

Examples

			First few rows of the triangle are
  1;
  3, 4;
  6, 10, 9;
  10, 18, 21, 16;
  15, 28, 36, 36, 25;
  21, 40, 54, 60, 55, 36,
  ...
[1 0 0 / 1 2 0 / 1 2 3]^2 = [1 0 0 / 3 4 0 / 6 10 9].
Next higher order matrix generates rows of the one lower order, plus the next row.
For example, the 4 X 4 matrix [1 0 0 0 / 1 2 0 0 / 1 2 3 0 / 1 2 3 4]^2 = [1 0 0 0 / 3 4 0 0 / 6 10 9 0 / 10 18 21 16].
		

Crossrefs

Programs

  • Mathematica
    FindRow[n_] := Module[{i = 0}, While[Binomial[i, 2] < n, i++ ]; i - 1]; FindCol[n_] := n - Binomial[FindRow[n], 2]; A095729[n_] := FindCol[n](Binomial[FindRow[n]+1, 2] - Binomial[FindCol[n], 2]); Table[A095729[i], {i, 1, 91}] (* Keith Schneider (schneidk(AT)email.unc.edu), Jul 23 2007 *)

Extensions

More terms from Keith Schneider (schneidk(AT)email.unc.edu), Jul 23 2007
Edited by N. J. A. Sloane, Jul 03 2008 at the suggestion of R. J. Mathar

A104727 Triangle T(n,k) = (k-1-n)*(k-2-n)*(k^2+k+2*k*n+3*n^2+5*n)/24 read by rows, 1<=k<=n.

Original entry on oeis.org

1, 7, 3, 25, 15, 6, 65, 45, 26, 10, 140, 105, 71, 40, 15, 266, 210, 155, 103, 57, 21, 462, 378, 295, 215, 141, 77, 28, 750, 630, 511, 395, 285, 185, 100, 36, 1155, 990, 826, 665, 510, 365, 235, 126, 45, 1705, 1485, 1266, 1050, 840, 640, 455, 291, 155, 55, 2431, 2145, 1860, 1578, 1302, 1036, 785, 555, 353, 187, 66, 3367, 3003
Offset: 1

Views

Author

Gary W. Adamson, Mar 20 2005

Keywords

Comments

The triangle is created by multiplying the lower triangular matrix A(n,k) = A000217(k) (1<=k<=n) by the lower triangular matrix B(n,k) = n-k+1 (1<=k<=n): T(n,k) = sum_{j=k..n} A(n,j)*B(j,k).
The commuted product B * A generates triangle A098358.

Examples

			First few rows of the triangle are:
1;
7, 3;
25, 15, 6;
665, 45, 26, 10;
140, 105, 71, 40, 15;
266, 210, 155, 103, 57, 21;
...
		

Crossrefs

Cf. A098358, A104727, A024166 (row sums).

Formula

T(n,1) = A001296(n). - R. J. Mathar, Oct 29 2011
Previous Showing 41-50 of 59 results. Next