A085292
Product of Lucas (A000204) and a Pell companion series (A001333).
Original entry on oeis.org
1, 9, 28, 119, 451, 1782, 6931, 27119, 105868, 413649, 1615681, 6311522, 24654241, 96306849, 376200748, 1469546399, 5740457491, 22423834422, 87593763331, 342165736199, 1336595027068, 5221113899769, 20395130698081, 79669083012482
Offset: 1
-
L[0] = 2; L[1] = 1; L[n] = L[n - 1] + L[n - 2]; P[0] = P[1] = 1; P[n_] := P[n] = 2P[n - 1] + P[n - 2]; Table[ L[n]P[n], {n, 1, 24}]
With[{nn=30},Rest[LinearRecurrence[{2,1},{1,1},nn]LucasL[Range[0,nn-1]]]] (* Harvey P. Dale, Apr 20 2012 *)
LinearRecurrence[{2, 7, 2, -1},{1, 9, 28, 119},24] (* Ray Chandler, Aug 03 2015 *)
A111108
a(n) = A001333(n) - (-2)^(n-1), n > 0.
Original entry on oeis.org
0, 5, 3, 25, 25, 131, 175, 705, 1137, 3875, 7095, 21649, 43225, 122435, 259423, 698625, 1541985, 4011971, 9107175, 23143825, 53559817, 133933475, 314086735, 776787009, 1838300625, 4512108515, 10745077143, 26237143825, 62749602745
Offset: 1
-
LinearRecurrence[{0,5,2},{0,5,3},30] (* Harvey P. Dale, May 03 2022 *)
-
concat(0, Vec(x^2*(5 + 3*x) / ((1 + 2*x)*(1 - 2*x - x^2)) + O(x^35))) \\ Colin Barker, May 01 2019
A131607
Pell companion numbers A001333 without last digit.
Original entry on oeis.org
1, 4, 9, 23, 57, 139, 336, 811, 1960, 4732, 11424, 27580, 66585, 160752, 388089, 936931, 2261953, 5460839, 13183632, 31828103, 76839840, 185507784, 447855408, 1081218600, 2610292609, 6301803820, 15213900249, 36729604319, 88673108889, 214075822099, 516824753088
Offset: 4
-
Table[Floor[(((1 - Sqrt[2])^n + (1 + Sqrt[2])^n)/2)/10], {n, 4, 29}] (* Metin Sariyar, Jan 03 2020 *)
-
a(n)={polcoef((1 - x) / (1 - 2*x - x^2) + O(x*x^n), n)\10} \\ Andrew Howroyd, Jan 02 2020
Offset changed and terms a(24) and beyond from
Andrew Howroyd, Jan 02 2020
A062133
Triangle of coefficients of polynomials (rising powers) useful for convolutions of A001333(n+1), n >= 0 (associated Pell numbers).
Original entry on oeis.org
0, 1, 2, 20, 36, 16, 456, 944, 672, 160, 14304, 33760, 28800, 10880, 1536, 575040, 1466752, 1413120, 666880, 157440, 14848, 27659520, 74774784, 79278080, 43330560, 13153280, 2128896, 143360, 1548126720
Offset: 0
Triangle begins:
{0};
{1,2};
{20,36,16};
{456,944,672,160};
...
pPL1(2,n) = 4*(5+9*n+4*n^2) = 4*(1+n)*(5+4*n).
pPL2(2,n) = 8*(1+3*n+2*n^2) = 8*(1+n)*(1+2*n).
PL(2; n) = A054460(n) = (1+n)*((5+4*n)*PL(n+1)+(1+2*n)*PL(n))/16.
Cf.
A062134(n, m) (companion triangle),
A054458(n, m) (convolution triangle).
A131721
Overlay of Pell companion numbers: a(n) = A001333(n) + A001333(n-6).
Original entry on oeis.org
1, 1, 3, 7, 17, 41, 100, 240, 580, 1400, 3380, 8160, 19700, 47560, 114820, 277200, 669220, 1615640, 3900500, 9416640, 22733780, 54884200, 132502180, 319888560, 772279300, 1864447160, 4501173620, 10866794400, 26234762420, 63336319240
Offset: 0
-
LinearRecurrence[{2, 1}, {1, 1, 3, 7, 17, 41, 100, 240}, 50] (* Paolo Xausa, Mar 01 2024 *)
A138683
a(1)=1 and, for n>1, a(n) is the smallest integer greater than a(n-1) such that a(n) and a(k) do not sum to a term of A001333 (Numerators of continued fraction convergents to sqrt(2)).
Original entry on oeis.org
2, 3, 6, 7, 8, 12, 13, 16, 17, 18, 19, 20, 26, 27, 30, 31, 32, 36, 37, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 60, 61, 64, 65, 66, 70, 71, 74, 75, 76, 77, 78, 84, 85, 88, 89, 90, 94, 95, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115
Offset: 1
A143966
Eigentriangle with row sums = A001333 starting (1, 3, 7, 17, 41, 99, ...).
Original entry on oeis.org
1, 2, 1, 2, 2, 3, 2, 2, 6, 7, 2, 2, 6, 14, 17, 2, 2, 6, 14, 34, 41, 2, 2, 6, 14, 34, 82, 99, 2, 2, 6, 14, 34, 82, 198, 239, 2, 2, 6, 14, 34, 82, 198, 478, 577
Offset: 0
First few rows of the triangle:
1;
2, 1;
2, 2, 3;
2, 2, 6, 7;
2, 2, 6, 14, 17;
2, 2, 6, 14, 34, 41;
2, 2, 6, 14, 34, 82, 99;
2, 2, 6, 14, 34, 82, 198, 239;
...
A158843
G.f.: A(x) = exp( Sum_{n>=1} A001333(n)^n * 2^n*x^n/n ).
Original entry on oeis.org
1, 2, 20, 952, 336112, 742166496, 10043945021760, 814531629739559808, 393150002983518264270592, 1123538097532735360702239462912, 18948231465474675384343860006353603584, 1881331085022567366434813565917484763975526400
Offset: 0
G.f.: A(x) = 1 + 2*x + 20*x^2 + 952*x^3 + 336112*x^4 + 742166496*x^5 +...
log(A(x)) = 2*x + 6^2*x^2/2 + 14^3*x^3/3 + 34^4*x^4/4 + 82^5*x^5/5 +...
log(G(x)) = 2*x + 6*x^2/2 + 14*x^3/3 + 34*x^4/4 + 82*x^5/5 +...
G(x) = 1 + 2*x + 5*x^2 + 12*x^3 + 29*x^4 + 70*x^5 + 169*x^6 +... (A000129).
-
{a(n)=local(LD=Vec(2*(1+x)/(1-2*x-x^2 +x*O(x^n)))); polcoeff(exp(sum(m=1,n,LD[m]^m*x^m/m)+x*O(x^n)),n)}
A160756
Triangle read by rows, infinite lower triangular Toeplitz matrix with A078008 in every column convolved with A001333.
Original entry on oeis.org
1, 0, 1, 2, 0, 1, 2, 2, 0, 3, 6, 2, 2, 0, 7, 10, 6, 2, 6, 0, 17, 22, 10, 6, 6, 14, 0, 41, 42, 22, 10, 18, 14, 34, 0, 99, 86, 42, 22, 30, 42, 34, 82, 0, 239, 170, 86, 42, 66, 70, 102, 82, 198, 0, 577
Offset: 0
First few rows of the triangle =
1;
0, 1;
2, 0, 1;
2, 2, 0, 3;
6, 2, 2, 0, 7;
10, 6, 2, 6, 0, 17;
22, 10, 6, 6, 14, 0, 41;
42, 22, 10, 18, 14, 34, 0, 99;
86, 42, 22, 30, 42, 34, 82, 0, 239;
170, 86, 42, 66, 70, 102, 82, 198, 0, 577;
...
Example: row 4 = (6, 2, 2, 0, 7) = (6, 2, 2, 0, 1) * (1, 1, 1, 3, 7).
A176481
Triangle, read by rows, defined by T(n, k) = b(n) - b(k) - b(n-k) + 2, where b(n) = A001333(n).
Original entry on oeis.org
1, 1, 1, 1, 3, 1, 1, 5, 5, 1, 1, 11, 13, 11, 1, 1, 25, 33, 33, 25, 1, 1, 59, 81, 87, 81, 59, 1, 1, 141, 197, 217, 217, 197, 141, 1, 1, 339, 477, 531, 545, 531, 477, 339, 1, 1, 817, 1153, 1289, 1337, 1337, 1289, 1153, 817, 1, 1, 1971, 2785, 3119, 3249, 3283, 3249, 3119, 2785, 1971, 1
Offset: 0
Triangle begins as:
1;
1, 1;
1, 3, 1;
1, 5, 5, 1;
1, 11, 13, 11, 1;
1, 25, 33, 33, 25, 1;
1, 59, 81, 87, 81, 59, 1;
1, 141, 197, 217, 217, 197, 141, 1;
1, 339, 477, 531, 545, 531, 477, 339, 1;
1, 817, 1153, 1289, 1337, 1337, 1289, 1153, 817, 1;
1, 1971, 2785, 3119, 3249, 3283, 3249, 3119, 2785, 1971, 1;
-
b:= func< n| Round(((1+Sqrt(2))^n + (1-Sqrt(2))^n)/2) >; [[b(n)-b(k)-b(n-k)+2: k in [0..n]]: n in [0..10]]; // G. C. Greubel, May 06 2019
-
b[n_]:= LucasL[n, 2]/2; T[n_, k_]:= b[n] -b[k] -b[n-k] +2;
Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* modified by G. C. Greubel, May 06 2019 *)
-
{b(n) = round(((1+sqrt(2))^n + (1-sqrt(2))^n)/2)};
{T(n,k) = b(n) -b(k) -b(n-k) +2};
for(n=0,10, for(k=0,n, print1(T(n,k), ", "))) \\ G. C. Greubel, May 06 2019
-
def b(m): return lucas_number2(m,2,-1)/2
def T(n, k): return b(n) - b(k) - b(n-k) + 2
[[T(n, k) for k in (0..n)] for n in (0..12)] # G. C. Greubel, May 06 2019
Comments