cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 70 results. Next

A076571 Binomial triangle based on factorials.

Original entry on oeis.org

1, 1, 2, 2, 3, 5, 6, 8, 11, 16, 24, 30, 38, 49, 65, 120, 144, 174, 212, 261, 326, 720, 840, 984, 1158, 1370, 1631, 1957, 5040, 5760, 6600, 7584, 8742, 10112, 11743, 13700, 40320, 45360, 51120, 57720, 65304, 74046, 84158, 95901, 109601
Offset: 0

Views

Author

Henry Bottomley, Oct 19 2002

Keywords

Examples

			Rows start:
    1;
    1,   2;
    2,   3,   5;
    6,   8,  11,  16;
   24,  30,  38,  49,  65;
  120, 144, 174, 212, 261, 326;
		

Crossrefs

Right hand columns include A000522, A001339, A001340, A001341, A001342.
Cf. A002627 (row sums), A099022.

Programs

  • Magma
    A076571:= func< n,k| (&+[Binomial(k,j)*Factorial(n-j): j in [0..k]]) >;
    [A076571(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Oct 05 2023
    
  • Mathematica
    A076571[n_, k_]:= n!*Hypergeometric1F1[-k,-n,1];
    Table[A076571[n,k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Oct 05 2023 *)
  • SageMath
    def A076571(n,k): return sum(binomial(k,j)*factorial(n-j) for j in range(k+1))
    flatten([[A076571(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Oct 05 2023

Formula

T(n, k) = Sum_{j=0..k} binomial(k, j)*(n-j)!.
T(n, k) = T(n, k-1) + T(n-1, k-1) with T(n, 0) = n!.
T(n, n) = A000522(n).
Sum_{k=0..n} T(n, k) = A002627(n+1).
From G. C. Greubel, Oct 05 2023: (Start)
T(n, k) = n! * Hypergeometric1F1([-k], [-n], 1).
T(2*n, n) = A099022(n). (End)

A081923 Expansion of e.g.f.: exp(2x)/(1-x)^2.

Original entry on oeis.org

1, 4, 18, 92, 536, 3552, 26608, 223456, 2085504, 21450752, 241320704, 2949474816, 38933066752, 552141672448, 8374148696064, 135274709700608, 2318995023429632, 42051109758173184, 804227474125029376
Offset: 0

Views

Author

Paul Barry, Apr 01 2003

Keywords

Comments

Binomial transform of A001339.
Polynomials in A010027 evaluated at 3. - Ralf Stephan, Dec 15 2004
From Dennis P. Walsh, Sep 18 2013: (Start)
a(n) is the number of rooted labeled forests that satisfy the following conditions:
(i) there are 4 roots labeled 1, 2, 3, and 4;
(ii) there are n non-root vertices labeled 5,..., n+4;
(iii) the trees with roots 1 and 2 have width one;
(iv) the trees with roots 3 and 4 have height at most one.
To construct such a forest, for k=0,...,n, we take the following steps:
(1) choose k non-root vertices for trees with roots 1 and 2;
(2) construct width-one trees on roots 1 and 2 with the k non-root vertices;
(3) with the n-k remaining non-root vertices construct trees of height at most one on roots 3 and 4.
Thus a(n) is the sum (over k) of the product of the number of ways to do each step: a(n)=sum(k=0..n, binomial(n,k)*(k+1)!*2^(n-k)). (End)

Examples

			For n=2, the a(2)=18 forests that satisfy the specified conditions are given in the link above. - _Dennis P. Walsh_, Sep 20 2013
		

Crossrefs

Cf. A081923(n) (sum(k=0..n, binomial(n,k)*A000522(n-k)*A000522(k))).

Programs

  • Maple
    seq(n!*add((k+1)*2^(n-k)/(n-k)!,k=0..n),n=0..40); # Dennis P. Walsh, Sep 18 2013
    seq(simplify(KummerU(-n, -n - 1, 2)), n = 0..24); # Peter Luschny, May 10 2022
  • Mathematica
    With[{nn=20},CoefficientList[Series[Exp[2x]/(1-x)^2,{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, May 10 2025 *)

Formula

E.g.f.: exp(2*x)/(1-x)^2
E.g.f.: 1/U(0) where U(k)= 1 - 2*x/( 1 + x/(2 - x - 4/( 2 - x*(k+1)/U(k+1)))) ; (continued fraction, 3rd kind, 4-step). - Sergei N. Gladkovskii, Oct 28 2012
Conjecture: a(n) +(-n-3)*a(n-1) +2*(n-1)*a(n-2)=0. - R. J. Mathar, Nov 24 2012
G.f.: 2/x/G(0) - 1/x, where G(k)= 1 + 1/(1 - x*(2*k+2)/(x*(2*k+4) - 1 + x*(2*k+2)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 31 2013
G.f.: (sum(k>=0, k!*(x/(1-2*x))^k ) - 1)/x = Q(0)/(2*x) - 1/x, where Q(k)= 1 + 1/(1 - x*(k+1)/(x*(k+1) + (1-2*x)/Q(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Aug 09 2013
G.f.: W(0)/x - 1/x, where W(k) = 1 - x*(k+1)/( x*(k+3) - 1/(1 - x*(k+1)/( x*(k+1) - 1/W(k+1) ))); (continued fraction). - Sergei N. Gladkovskii, Aug 26 2013
a(n) = n!*sum(k=0..n, (k+1)*2^(n-k)/(n-k)!). [Dennis P. Walsh, Sep 18 2013]
a(n) = n!*sum(k=0..n, (n-k+1)*2^k/k!). [Dennis P. Walsh, Sep 18 2013]
From Peter Bala, Sep 25 2013: (Start)
a(n) ~ n!*n*e^2.
Applying Maple's ZeilbergerRecurrence command to the above series of Walsh for a(n) results in the first-order recurrence equation (n - 1)*a(n+1) = n*(n + 1)*a(n) - 2^(n+2) with a(0) = 1 and a(2) = 18. Using this it is easy to verify that a(n) satisfies the second-order recurrence a(n) = (n + 3)*a(n-1) - 2*(n - 1)*a(n-2) conjectured above by Mathar.
The sequence b(n) = n!*(n - 1) satisfies the same second-order recurrence but with the initial conditions b(0) = -1 and b(1) = 0. This leads to the finite continued fraction expansion a(n)/b(n) = 9 - 2*( 4/(6 - 6/(7 - 8/(9 - ... - 2*n/(n + 4)))) ) valid for n >= 2. Letting n tend to infinity produces the infinite continued fraction expansion e^2 = 9 - 2*( 4/(6 - 6/(7 - 8/(9 - ... - 2*n/(n + 4 - ...)))) ). (End)
a(n) = KummerU(-n, -n - 1, 2). - Peter Luschny, May 10 2022

Extensions

Definition clarified by Harvey P. Dale, May 10 2025

A082427 a(1)=1, a(n) = n * (Sum_{k=1..n-1} a(k)) - 2.

Original entry on oeis.org

1, 0, 1, 6, 38, 274, 2238, 20462, 207178, 2301978, 27853934, 364633318, 5135252562, 77423807858, 1244311197718, 21236244441054, 383579665216538, 7310577148832842, 146617686151591998, 3086688129507199958, 68061473255633759074, 1568654907415559018658
Offset: 1

Views

Author

Benoit Cloitre, Apr 24 2003

Keywords

Crossrefs

Programs

  • Mathematica
    Join[{1},Table[Floor[n(11/2-2E)n!],{n,2,20}]] (* Harvey P. Dale, May 09 2013 *)

Formula

a(n) = floor(n*(11/2 - 2*e)*n!) for n >= 2.
a(n) = (n+2)*a(n-1) - (n-1)*a(n-2) for n>3. - Gary Detlefs, Jun 30 2024
From Seiichi Manyama, Apr 27 2025: (Start)
E.g.f.: 2 + 3*x/2 + (11*x/2 - 2*exp(x))/(1-x)^2.
a(n) = 11*n/2 * n! - 2 * Sum_{k=0..n} (k+1)! * binomial(n,k) for n > 1.
a(n) = (n^2 * a(n-1) + 2)/(n-1) for n > 2. (End)

Extensions

Offset changed to 1 by Georg Fischer, May 15 2024

A082428 a(1) = 1; a(n) = 3 + n * Sum_{k=1..n-1} a(k).

Original entry on oeis.org

1, 5, 21, 111, 693, 4989, 40743, 372507, 3771633, 41907033, 507075099, 6638074023, 93486209157, 1409484384213, 22652427603423, 386601431098419, 6982988349215193, 133087542655630737, 2669144605482372003, 56192518010155200063, 1239045022123922161389, 28557037652760872672013
Offset: 1

Views

Author

Benoit Cloitre, Apr 24 2003

Keywords

Crossrefs

Formula

for n>=2 a(n) = ceiling(n*(3e-7)*n!).
From Seiichi Manyama, Apr 27 2025: (Start)
E.g.f.: -3 - x + (-7*x + 3*exp(x))/(1-x)^2.
a(n) = -7 * n * n! + 3 * Sum_{k=0..n} (k+1)! * binomial(n,k) for n > 1.
a(n) = (n^2 * a(n-1) - 3)/(n-1) for n > 2.
a(n) = (n+2) * a(n-1) - (n-1) * a(n-2) for n > 3. (End)

A269951 Triangle read by rows, T(n,k) = Sum_{j=0..n} (-1)^(n-j)*C(-j,-n)*S1(j,k), S1 the Stirling cycle numbers A132393, for n>=0 and 0<=k<=n.

Original entry on oeis.org

1, 0, 1, 0, 2, 1, 0, 5, 5, 1, 0, 16, 23, 9, 1, 0, 65, 116, 65, 14, 1, 0, 326, 669, 470, 145, 20, 1, 0, 1957, 4429, 3634, 1415, 280, 27, 1, 0, 13700, 33375, 30681, 14084, 3535, 490, 35, 1, 0, 109601, 283072, 284066, 147532, 43939, 7756, 798, 44, 1
Offset: 0

Views

Author

Peter Luschny, Apr 10 2016

Keywords

Examples

			Triangle begins:
  1;
  0,   1;
  0,   2,   1;
  0,   5,   5,   1;
  0,  16,  23,   9,   1;
  0,  65, 116,  65,  14,  1;
  0, 326, 669, 470, 145, 20, 1;
		

Crossrefs

A000522 (col. 1), A073596 (col. 2), A000096 (diag. n-1), A241765 (diag. n-2).
A001339 (row sums), A137597 (unsigned matrix inverse).

Programs

  • Maple
    A269951 := (n,k) -> add((-1)^(n-j)*binomial(-j,-n)*abs(Stirling1(j,k)), j=0..n):
    seq(seq(A269951(n,k), k=0..n), n=0..9);
  • Mathematica
    Flatten[ Table[ Sum[(-1)^(n-j) Binomial[-j,-n] Abs[StirlingS1[j,k]], {j,0,n}], {n,0,9}, {k,0,n}]]

A358738 Expansion of Sum_{k>=0} k! * ( x/(1 - k*x) )^k.

Original entry on oeis.org

1, 1, 3, 15, 103, 893, 9341, 114355, 1603155, 25318137, 444689497, 8597568671, 181430298479, 4149361409077, 102229328244837, 2699254206069387, 76038064580742091, 2276259442660623857, 72160287650141753777, 2414950992007231422007
Offset: 0

Views

Author

Seiichi Manyama, Nov 29 2022

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 20; CoefficientList[Series[Sum[k! * (x/(1 - k*x))^k, {k, 0, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Feb 18 2023 *)
  • PARI
    my(N=20, x='x+O('x^N)); Vec(sum(k=0, N, k!*(x/(1-k*x))^k))
    
  • PARI
    a(n) = if(n==0, 1, sum(k=1, n, k!*k^(n-k)*binomial(n-1, k-1)));

Formula

a(n) = Sum_{k=1..n} k! * k^(n-k) * binomial(n-1,k-1) for n > 0.
a(n) ~ n! / ((1 + LambertW(1))^2 * LambertW(1)^n). - Vaclav Kotesovec, Feb 18 2023

A383436 a(1) = 1; a(n) = 2 + n * Sum_{k=1..n-1} a(k).

Original entry on oeis.org

1, 4, 17, 90, 562, 4046, 33042, 302098, 3058742, 33986022, 411230866, 5383385882, 75816017838, 1143072268942, 18370804322282, 313528393766946, 5663106612415462, 107932149554271158, 2164639221616216002, 45571352034025600042, 1004848312350264480926, 23159361103691809941342
Offset: 1

Views

Author

Seiichi Manyama, Apr 27 2025

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(-2-x/2+(-9*x/2+2*exp(x))/(1-x)^2))

Formula

E.g.f.: -2 - x/2 + (-9*x/2 + 2*exp(x))/(1-x)^2.
a(n) = -9*n/2 * n! + 2 * Sum_{k=0..n} (k+1)! * binomial(n,k) for n > 1.
a(n) = (n^2 * a(n-1) - 2)/(n-1) for n > 2.
a(n) = (n+2) * a(n-1) - (n-1) * a(n-2) for n > 3.

A383437 a(1) = 1; a(n) = 5 + n * Sum_{k=1..n-1} a(k).

Original entry on oeis.org

1, 7, 29, 153, 955, 6875, 56145, 513325, 5197415, 57749055, 698763565, 9147450305, 128826591795, 1942308614755, 31215674165705, 532747505761365, 9622751822814655, 183398328858349895, 3678155373214684005, 77434849962414400105, 1707438441671237522315
Offset: 1

Views

Author

Seiichi Manyama, Apr 27 2025

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(-5-2*x+(-12*x+5*exp(x))/(1-x)^2))

Formula

E.g.f.: -5 - 2*x + (-12*x + 5*exp(x))/(1-x)^2.
a(n) = -12 * n * n! + 5 * Sum_{k=0..n} (k+1)! * binomial(n,k) for n > 1.
a(n) = (n^2 * a(n-1) - 5)/(n-1) for n > 2.
a(n) = (n+2) * a(n-1) - (n-1) * a(n-2) for n > 3.

A144495 Row 2 of array in A144502.

Original entry on oeis.org

2, 7, 30, 155, 946, 6687, 53822, 486355, 4877250, 53759351, 646098622, 8409146187, 117836551730, 1768850337295, 28318532194206, 481652022466307, 8673291031865602, 164849403644999655, 3297954931572397790, 69274457019123638011, 1524368720086682440242
Offset: 0

Views

Author

David Applegate and N. J. A. Sloane, Dec 13 2008

Keywords

Crossrefs

Programs

  • Magma
    A144495:= func< n | (&+[Binomial(n,k)*(k+4)*Factorial(k+1) : k in [0..n]])/2 >;
    [A144495(n): n in [0..40]]; // G. C. Greubel, Oct 07 2023
    
  • Maple
    f:= rectoproc({a(n)=((4+3*n)*a(n-1)-(n+3)*(n-1)*a(n-2)+(n-1)*(n-2)*a(n-3))/2,a(0)=2,a(1)=7,a(2)=30},a(n),remember):
    map(f, [$0..40]); # Robert Israel, Oct 02 2016
  • Mathematica
    (* First program *)
    t[0, ] = 1; t[n, 0] := t[n, 0] = t[n-1, 1];
    t[n_, k_] := t[n, k] = t[n-1, k+1] + k*t[n, k-1];
    a[n_] := t[2, n];
    Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Aug 19 2022 *)
    (* Second program *)
    a[n_]:= a[n]= If[n==0, 2, (n*(n^2+3*n+1)*a[n-1] -(n+2))/(n^2+n-1)];
    Table[a[n], {n,0,40}] (* G. C. Greubel, Oct 07 2023 *)
  • SageMath
    def A144495(n): return sum(binomial(n,j)*factorial(j+1)*(j+4) for j in range(n+1))/2
    [A144495(n) for n in range(41)] # G. C. Greubel, Oct 07 2023

Formula

E.g.f.: exp(x)*(2-x)/(1-x)^3.
a(n) = (1/2) * (floor((n+1)*(n+1)!*e) + floor(n*n!*e)). [Gary Detlefs, Jun 06 2010]
a(n) = (1/2) * ( A001339(n) + A001339(n+1) ). [Gary Detlefs, Jun 06 2010]
a(n) = (1/2) * (3 + n + (1 + 3*n + n^2) * A000522(n)). - Gerry Martens, Oct 02 2016
a(n) = ((4+3*n)*a(n-1) - (n+3)*(n-1)*a(n-2) + (n-1)*(n-2)*a(n-3))/2. - Robert Israel, Oct 02 2016
From Peter Bala, May 27 2022: (Start)
a(n) = (1/2)*(A000522(n+2) - A000522(n)).
a(n) = (1/2)*Sum_{k = 0..n} binomial(n,k)*(k+4)*(k+1)!; binomial transform of A038720(n+1).
a(n) = (1/2)*e*Integral_{x >= 1} x^n*(x^2 - 1)*exp(-x).
a(2*n) is even and a(2*n+1) is odd. More generally, a(n+k) == a(n) (mod k) for all n and k. It follows that for each positive integer k, the sequence obtained by reducing a(n) modulo k is periodic, with the exact period dividing k. Various divisibility properties of the sequence follow from this; for example, a(3*n+2) == 0 (mod 3), a(5*n+2) == a(5*n+3) (mod 5), a(7*n+1) == 0 (mod 7) and a(11*n+4) == 0 (mod 11). (End)
a(n) = (n*(n^2 + 3*n + 1)*a(n-1) - (n + 2))/(n^2 + n - 1), with a(0) = 2. - G. C. Greubel, Oct 07 2023

A276080 a(n) = A276075(A206296(n)).

Original entry on oeis.org

0, 1, 2, 7, 28, 139, 822, 5677, 44888, 400021, 3966970, 43328131, 516782292, 6682867087, 93130824878, 1391321096089, 22181459914672, 375880800693097, 6746469047955378, 127851581333528191, 2551039715319388940, 53457519928692619411, 1173770856436282074982, 26948387795024752862917, 645694707721735535710728, 16117771962578155161812989
Offset: 0

Views

Author

Antti Karttunen, Aug 18 2016

Keywords

Crossrefs

Programs

  • Maple
    A276080 := proc (n) add((n-2*k)*factorial(n-k-1)/factorial(k), k = 0..floor((1/2)*n-1/2)) end proc:
    seq(A276080(n), n = 0..25); # Peter Bala, Dec 24 2017
  • Mathematica
    Map[If[# == 1, 0, Total[FactorInteger[#] /. {p_, e_} /; p > 1 :> e PrimePi[p]!]] &, Nest[Append[#, (Times @@ Map[#1^#2 & @@ # &, FactorInteger[#] /. {p_, e_} /; e > 0 :> {Prime[PrimePi@ p + 1], e}] - Boole[# == 1] &@ #[[-1]]) #[[-2]]] &, {1, 2}, 24]] (* Michael De Vlieger, Dec 24 2017 *)
  • Python
    from sympy import factorint, factorial as f, prime, primepi
    from operator import mul
    from functools import reduce
    def a003961(n):
        F=factorint(n)
        return 1 if n==1 else reduce(mul, [prime(primepi(i) + 1)**F[i] for i in F])
    def a276075(n):
        F=factorint(n)
        return 0 if n==1 else sum([F[i]*f(primepi(i)) for i in F])
    l=[1, 2]
    L=[0, 1]
    for n in range(2, 11):
        l.append(a003961(l[n - 1])*l[n - 2])
        L.append(a276075(l[n]))
    print(L) # Indranil Ghosh, Jun 21 2017
  • Scheme
    (define (A276080 n) (A276075 (A206296 n)))
    ;; A more practical standalone program, that uses memoization-macro definec:
    (define (A276080 n) (sum_factorials_times_elements_in (A206296as_index_lists n)))
    (definec (A206296as_index_lists n) (cond ((zero? n) (list)) ((= 1 n) (list 1)) (else (map + (cons 0 (A206296as_index_lists (- n 1))) (append (A206296as_index_lists (- n 2)) (list 0 0))))))
    (define (sum_factorials_times_elements_in nums) (let loop ((s 0) (nums nums) (i 2) (f 1)) (cond ((null? nums) s) (else (loop (+ s (* (car nums) f)) (cdr nums) (+ 1 i) (* i f))))))
    

Formula

a(n) = A276075(A206296(n)).
From Peter Bala, Dec 24 2017: (Start)
a(n) = Sum_{k = 0..floor((n-1)/2)} (n-2*k)!*binomial(n-k-1,k).
O.g.f.: Sum_{n >= 1} n!*x^n/(1 - x^2)^n = x + 2*x^2 + 7*x^3 + 28*x^4 + ....
Cf. A001339(n) = A276075(A007188(n)) for n >= 1, with o.g.f. Sum_{n >= 0} n!*x^n/(1 - x)^n. (End)
Previous Showing 31-40 of 70 results. Next