cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 70 results. Next

A006183 a(n) = (n+1)*a(n-1) + (2-n)*a(n-2).

Original entry on oeis.org

1, 2, 6, 22, 98, 522, 3262, 23486, 191802, 1753618, 17755382, 197282022, 2387112466, 31249472282, 440096734638, 6635304614542, 106638824162282, 1819969265702946, 32873194861759462, 626524419718239158, 12565295306571352002, 264532532769923200042
Offset: 1

Views

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Equals A030297(n-1) - A030297(n-2) + 1. Cf. A054096.
Equals 2 * A001339(n+2).

Programs

  • Magma
    [n le 2 select n else n*Self(n-1)+(3-n)*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Mar 06 2016
  • Mathematica
    RecurrenceTable[{a[n] == (n + 1) a[n - 1] + (2 - n) a[n - 2], a[0] == 1, a[1] == 2}, a, {n, 20}] (* Robert G. Wilson v, Jun 15 2013 *)

Formula

G.f.: 2*Sum_{k>=0} k!*(x/(1-x))^k - 1 = Q(0) -1, where Q(k)= 1 + 1/(1 - x*(k+1)/(x*(k+1) + (1-x)/Q(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Aug 08 2013

Extensions

More terms from James Sellers, Aug 21 2000
a(1) from Robert G. Wilson v, Jun 15 2013
a(21)-a(22) from Vincenzo Librandi, Mar 06 2016

A026243 a(n) = A000522(n) - 2.

Original entry on oeis.org

0, 3, 14, 63, 324, 1955, 13698, 109599, 986408, 9864099, 108505110, 1302061343, 16926797484, 236975164803, 3554627472074, 56874039553215, 966858672404688, 17403456103284419, 330665665962403998, 6613313319248079999, 138879579704209680020, 3055350753492612960483
Offset: 1

Views

Author

N. J. A. Sloane, based on a message from a correspondent who wishes to remain anonymous, Dec 21 2003

Keywords

Comments

Number of operations of addition and multiplication needed to evaluate a determinant of order n by cofactor expansion.

Examples

			To calculate a determinant of order 3:
    |a b c|       |e f|       |d f|       |d e|
D = |d e f| = a * |h i| - b * |g i| + c * |g h| =
    |g h i|
   = a * (e*i - f*h) - b * (d*i - f*g) + c * (d*h - e*g).
There are 9 multiplications * and 5 additions (+ or -), so 14 operations and a(3) = 14. - _Bernard Schott_, Apr 21 2019
		

Crossrefs

Cf. A000522, A007526. Equals A033312 + A038156.
Cf. A001339.

Programs

  • Maple
    a:= proc(n) a(n):= n*(a(n-1)+2)-1: end: a(1):= 0:
    seq (a(n), n=1..30);  # Alois P. Heinz, May 25 2012
  • Mathematica
    Table[E*Gamma[n+1, 1] - 2, {n, 1, 30}] (* Jean-François Alcover, May 18 2018 *)

Formula

a(n) = n*(a(n-1)+2)-1 for n>1, a(1) = 0. - Alois P. Heinz, May 25 2012
Conjecture: a(n) +(-n-2)*a(n-1) +(2*n-1)*a(n-2) +(-n+2)*a(n-3)=0. - R. J. Mathar, Jun 23 2013 [Confirmed by Altug Alkan, May 18 2018]
a(n) = floor(e*n!) - 2. - Bernard Schott, Apr 21 2019

A036918 a(n) = floor(e*(n-1)*(n-1)!).

Original entry on oeis.org

0, 2, 10, 48, 260, 1630, 11742, 95900, 876808, 8877690, 98641010, 1193556232, 15624736140, 220048367318, 3317652307270, 53319412081140, 909984632851472, 16436597430879730, 313262209859119578, 6282647653285676000, 132266266384961600020, 2916471173788403280462
Offset: 1

Views

Author

Keywords

Comments

Also the number of positive integers with all distinct digits expressed in base n. E.g., a(10) = Sum_{j=1..10} A073531(j). - Labos Elemer, Dec 05 2002
For example, for n=3 we have 1, 2, 10, 12, 20, 21, 102, 120, 201, 210 (10 numbers in total). - Igor Krasikov, Aug 14 2023

Crossrefs

a(n) = A001339(n)-1.
Equals (n-1)*A000522(n-1).

Programs

  • Mathematica
    Table[Apply[Plus, Table[((b-1)/b)*Binomial[b, j]*j!, {j, 1, b}]], {b, 1, 25}]
    Table[Floor[E(n-1)(n-1)!],{n,25}] (* Harvey P. Dale, May 19 2025 *)

Formula

G.f.: Q(0)/(2*x) - 1/x - 1/(1-x), where Q(k) = 1 + 1/(1 - x*(k+1)/(x*(k+1) + (1-x)/Q(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Aug 08 2013
a(n) = 2*(A038155(n) - A038155(n-1)). - Anton Zakharov, Oct 13 2016

A073591 a(n) = A000522(n) + 1.

Original entry on oeis.org

2, 3, 6, 17, 66, 327, 1958, 13701, 109602, 986411, 9864102, 108505113, 1302061346, 16926797487, 236975164806, 3554627472077, 56874039553218, 966858672404691, 17403456103284422, 330665665962404001, 6613313319248080002
Offset: 0

Views

Author

Vladeta Jovovic, Aug 28 2002

Keywords

Comments

a(n) is an upper bound on the Ramsey numbers in A003323. - D. G. Rogers, Aug 27 2006
There is a nice derivation of the recurrence relation given in the Walker reference.

Crossrefs

Programs

  • Maple
    a:= proc(n) a(n):= `if`(n=0, 2, n*a(n-1)-n+2) end:
    seq(a(n), n=0..30);  # Alois P. Heinz, Feb 17 2014
  • Mathematica
    f[n_] := n*(f[n - 1] - 1) + 2;f[0]=2; ff[n_]:=(1/(1+n))(1+E*Gamma[1+n, 1]-E*(n^2)*Gamma[1+n, 1]+E*n*Gamma[2+n, 1]) (Spindler)
    Table[FunctionExpand[Gamma[n, 1] E] + 1, {n, 2, 29}] (* Vincenzo Librandi, Feb 17 2014 *)

Formula

Conjecture: a(n) +(-n-2)*a(n-1) +(2*n-1)*a(n-2) +(-n+2)*a(n-3)=0. - R. J. Mathar, Feb 16 2014
a(n) = n*(a(n-1) - 1) + 2. - Georg Fischer, Dec 24 2023 [from the Walker reference, p. 55]

A095722 E.g.f.: exp(x)/(1-x)^8.

Original entry on oeis.org

1, 9, 89, 961, 11265, 142601, 1940089, 28245729, 438351041, 7226001865, 126122874201, 2324074591169, 45094140207169, 919088049256521, 19633713260950265, 438708172312264801, 10234490436580101249
Offset: 0

Views

Author

Philippe Deléham, Jul 08 2004

Keywords

Comments

Sum_{k = 0..n} A094816(n,k)*x^k gives A000522(n), A001339(n), A082030(n), A095000(n), A095177(n), A096307(n), A096341(n) for x = 1, 2, 3, 4, 5, 6, 7 respectively.

Programs

  • Mathematica
    With[{nn=20},CoefficientList[Series[Exp[x]/(1-x)^8,{x,0,nn}],x] Range[ 0,nn]!] (* Harvey P. Dale, May 26 2013 *)
    Table[HypergeometricPFQ[{8, -n}, {}, -1], {n, 0, 20}] (* Benedict W. J. Irwin, May 27 2016 *)

Formula

a(n) = Sum_{k = 0..n} A094816(n, k)*8^k.
a(n) = Sum_{k = 0..n} binomial(n, k)*(k+7)! / 7!.
a(n) = 2F0(8,-n;;-1). - Benedict W. J. Irwin, May 27 2016

A276589 Transpose of A276588.

Original entry on oeis.org

1, 3, 2, 11, 8, 6, 49, 38, 30, 24, 261, 212, 174, 144, 120, 1631, 1370, 1158, 984, 840, 720, 11743, 10112, 8742, 7584, 6600, 5760, 5040, 95901, 84158, 74046, 65304, 57720, 51120, 45360, 40320, 876809, 780908, 696750, 622704, 557400, 499680, 448560, 403200, 362880, 8877691, 8000882, 7219974, 6523224, 5900520, 5343120, 4843440, 4394880, 3991680, 3628800
Offset: 0

Views

Author

Antti Karttunen, Sep 19 2016

Keywords

Comments

Rows give the successive first differences of A001339.

Examples

			The top left corner of the array:
     1,     3,     11,      49,      261,      1631,      11743
     2,     8,     38,     212,     1370,     10112,      84158
     6,    30,    174,    1158,     8742,     74046,     696750
    24,   144,    984,    7584,    65304,    622704,    6523224
   120,   840,   6600,   57720,   557400,   5900520,   68019240
   720,  5760,  51120,  499680,  5343120,  62118720,  780827760
  5040, 45360, 448560, 4843440, 56775600, 718709040, 9778048560
		

Crossrefs

Topmost row: A001339. For other rows and columns, see the information given in transpose A276588.
Cf. also A276587.

Programs

  • Mathematica
    T[r_, c_]:=Sum[Binomial[r, k](1 + c + k)!, {k, 0, r}]; Table[T[r - c, c], {r, 0, 10}, {c, 0, r}] // Flatten (* Indranil Ghosh, Apr 11 2017 *)
  • PARI
    T(r, c) = sum(k=0, r, binomial(r, k)*(1 + c + k)!);
    for(r=0, 10, for(c=0, r, print1(T(r - c, c),", ");); print();) \\ Indranil Ghosh, Apr 11 2017
    
  • Python
    from sympy import binomial, factorial
    def T(r, c): return sum([binomial(r, k) * factorial(1 + c + k) for k in range(r + 1)])
    for r in range(11): print([T(r - c, c) for c in range(r + 1)]) # Indranil Ghosh, Apr 11 2017
  • Scheme
    (define (A276589 n) (A276588bi (A025581 n) (A002262 n))) ;; Code for A276588bi given in A276588.
    

A023805 Xenodromes: all digits in base 11 are different.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 73, 74
Offset: 1

Views

Author

Keywords

Comments

Considering some base b, there are b numbers with 1 digit, (b-1)*(b-1) numbers with 2 digits -- since leading 0's are not allowed and the second digit must avoid the first. There are (b-1)*(b-1)*(b-2) numbers with 3 digits, (b-1)*(b-1)*(b-2)*..*(b-d+1) numbers with d digits, in total b+(b-1)*sum_{d=2..b} (b-1)!/(b-d)! = b+(b-1)^2* 2F0(1,2-b;;-1) = A001339(b-1). The formula is applicable to sequences A023798 - A023810. This sequence here as A001339(11-1) = 98641011 terms. [From R. J. Mathar, Jan 27 2010]
Last term is a(98641011) = 282458553905. - Charles R Greathouse IV, Jun 16 2012

Examples

			121 (in decimal) = 100 (base 11) is a member of A168186 but not a member of this sequence. - Robert Munafo, Jan 26 2010
156 is in A023805 but not in A168186. - Franklin T. Adams-Watters, Jan 26 2010
		

Crossrefs

All three of A023805, A160453, A168186 are different.

Programs

  • Mathematica
    Select[Range[0, 100], Max[DigitCount[#, 11]] == 1 &] (* Paolo Xausa, Mar 22 2025 *)

A051256 Numbers formed from binomial coefficients (mod 2) interpreted as digits in factorial base.

Original entry on oeis.org

1, 3, 7, 33, 121, 843, 5167, 46233, 362881, 3991683, 40279687, 522910113, 6227383801, 93409304523, 1313941673647, 22324392524313, 355687428096001, 6758061133824003, 122000787836928007, 2561305169719296033
Offset: 0

Views

Author

Antti Karttunen, Oct 24 1999

Keywords

Examples

			a(5) = 1! + 2! + 5! + 6! = 843 (only the first, second, fifth and sixth terms are odd in row 5 of Pascal's Triangle).
		

Crossrefs

Programs

  • Maple
    A051256(n) := proc(n) local i; RETURN(add(((binomial(n,i) mod 2)*((i+1)!)),i=0..n)); end;
  • Mathematica
    Table[Sum[(k+1)!Mod[Binomial[n,k],2],{k,0,n}],{n,0,20}] (* Harvey P. Dale, Feb 14 2013 *)
  • Python
    from math import factorial
    def A051256(n):
        return sum(0 if ~n & k else factorial(k+1) for k in range(n+1)) # Chai Wah Wu, Feb 08 2016

Formula

a(n) = Sum_{k=0..n} (k+1)!(C(n, k) mod 2).

A089900 Square array, read by antidiagonals, where the n-th row is the n-th binomial transform of the factorials, starting with row 0: {1!,2!,3!,...}.

Original entry on oeis.org

1, 2, 1, 6, 3, 1, 24, 11, 4, 1, 120, 49, 18, 5, 1, 720, 261, 92, 27, 6, 1, 5040, 1631, 536, 159, 38, 7, 1, 40320, 11743, 3552, 1029, 256, 51, 8, 1, 362880, 95901, 26608, 7353, 1848, 389, 66, 9, 1, 3628800, 876809, 223456, 58095, 14384, 3125, 564, 83, 10, 1
Offset: 0

Views

Author

Paul D. Hanna, Nov 14 2003

Keywords

Comments

Row 1 is A001339, antidiagonal sums form A089902 and the main diagonal is A089901; the next lower diagonal forms {1,4,27,256,..,n^n,..}, which is the hyperbinomial transform (cf. A088956) of the main diagonal.

Examples

			Note secondary diagonal: {(n+1)^(n+1)}; rows begin:
1, 2,. 6,. 24,. 120,.. 720,.. 5040,..
1, 3, 11,. 49,. 261,. 1631,. 11743,..
1,_4, 18,. 92,. 536,. 3552,. 26608,..
1, 5,_27, 159, 1029,. 7353,. 58095,..
1, 6, 38,_256, 1848, 14384, 121264,..
1, 7, 51, 389,_3125, 26595, 241015,..
1, 8, 66, 564, 5016,_46656, 456048,..
1, 9, 83, 787, 7701, 78077,_823543,..
		

Crossrefs

Programs

  • Mathematica
    t[n_, k_] := (n^(k+2) - Exp[n]*(n-k-1)*Gamma[k+2, n])/(k+1) // Round; Table[t[n-k, k], {n, 0, 9}, {k, n, 0, -1}] // Flatten (* Jean-François Alcover, Jun 24 2013 *)
  • PARI
    T(n,k)=if(n<0 || k<0,0,sum(i=0,k,n^(k-i)*binomial(k,i)*(i+1)!))

Formula

T(0, k)=(k+1)!, T(n+1, n)=(n+1)^(n+1), T(n, k)=sum_{i=0..k}n^(k-i)*binomial(k, i)*(i+1)!
E.g.f.: 1/((1-y*exp(x))*(1-x)^2). E.g.f. (n-th row): exp(n*x)/(1-x)^2.

A095740 E.g.f.: exp(x)/(1-x)^9.

Original entry on oeis.org

1, 10, 109, 1288, 16417, 224686, 3288205, 51263164, 848456353, 14862109042, 274743964621, 5346258202000, 109249238631169, 2339328151461718, 52384307381414317, 1224472783033479556, 29826054965115774145
Offset: 0

Views

Author

Philippe Deléham Jul 09 2004

Keywords

Comments

Sum_{k = 0..n} A094816(n,k)*x^k gives A000522(n), A001339(n), A082030(n), A095000(n), A095177(n), A096307(n), A096341(n), A095722(n) for x = 1, 2, 3, 4, 5, 6, 7, 8.

Programs

  • Maple
    seq(simplify(hypergeom([9,-n],[],-1)),n=0..30); # Robert Israel, May 27 2016
  • Mathematica
    Table[HypergeometricPFQ[{9, -n}, {}, -1], {n, 0, 20}] (* Benedict W. J. Irwin, May 27 2016 *)

Formula

a(n) = Sum_{k = 0..n} A094816(n, k)*9^k.
a(n) = Sum_{k = 0..n} binomial(n, k)*(k+8)!/8!.
a(n) = 2F0(9,-n;;-1). - Benedict W. J. Irwin, May 27 2016
a(n) = ((n^8 + 28*n^7 + 350*n^6 + 2492*n^5 + 10899*n^4 + 29596*n^3 + 48082*n^2 + 42048*n + 14833) * Gamma(n+1,1)*e + n^7 + 28*n^6 + 349*n^5 + 2465*n^4 + 10579*n^3 + 27501*n^2 + 40132*n + 25487) / 40320. - Robert Israel, May 27 2016
Previous Showing 41-50 of 70 results. Next