A006183
a(n) = (n+1)*a(n-1) + (2-n)*a(n-2).
Original entry on oeis.org
1, 2, 6, 22, 98, 522, 3262, 23486, 191802, 1753618, 17755382, 197282022, 2387112466, 31249472282, 440096734638, 6635304614542, 106638824162282, 1819969265702946, 32873194861759462, 626524419718239158, 12565295306571352002, 264532532769923200042
Offset: 1
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
-
[n le 2 select n else n*Self(n-1)+(3-n)*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Mar 06 2016
-
RecurrenceTable[{a[n] == (n + 1) a[n - 1] + (2 - n) a[n - 2], a[0] == 1, a[1] == 2}, a, {n, 20}] (* Robert G. Wilson v, Jun 15 2013 *)
Original entry on oeis.org
0, 3, 14, 63, 324, 1955, 13698, 109599, 986408, 9864099, 108505110, 1302061343, 16926797484, 236975164803, 3554627472074, 56874039553215, 966858672404688, 17403456103284419, 330665665962403998, 6613313319248079999, 138879579704209680020, 3055350753492612960483
Offset: 1
N. J. A. Sloane, based on a message from a correspondent who wishes to remain anonymous, Dec 21 2003
To calculate a determinant of order 3:
|a b c| |e f| |d f| |d e|
D = |d e f| = a * |h i| - b * |g i| + c * |g h| =
|g h i|
= a * (e*i - f*h) - b * (d*i - f*g) + c * (d*h - e*g).
There are 9 multiplications * and 5 additions (+ or -), so 14 operations and a(3) = 14. - _Bernard Schott_, Apr 21 2019
- Alois P. Heinz, Table of n, a(n) for n = 1..170
- C. Dubbs and D. Siegel, Computing determinants, College Math. J., 18 (1987), 48-49.
- A. R. Pargeter, The vanishing coffee morning, Math. Gaz., 76 (1992), 386-387.
- P. G. Sawtelle, The ubiquitous e, Math. Mag., 49 (1976), 244-245. [_N. J. A. Sloane_, Jan 29 2009]
-
a:= proc(n) a(n):= n*(a(n-1)+2)-1: end: a(1):= 0:
seq (a(n), n=1..30); # Alois P. Heinz, May 25 2012
-
Table[E*Gamma[n+1, 1] - 2, {n, 1, 30}] (* Jean-François Alcover, May 18 2018 *)
A036918
a(n) = floor(e*(n-1)*(n-1)!).
Original entry on oeis.org
0, 2, 10, 48, 260, 1630, 11742, 95900, 876808, 8877690, 98641010, 1193556232, 15624736140, 220048367318, 3317652307270, 53319412081140, 909984632851472, 16436597430879730, 313262209859119578, 6282647653285676000, 132266266384961600020, 2916471173788403280462
Offset: 1
-
Table[Apply[Plus, Table[((b-1)/b)*Binomial[b, j]*j!, {j, 1, b}]], {b, 1, 25}]
Table[Floor[E(n-1)(n-1)!],{n,25}] (* Harvey P. Dale, May 19 2025 *)
Original entry on oeis.org
2, 3, 6, 17, 66, 327, 1958, 13701, 109602, 986411, 9864102, 108505113, 1302061346, 16926797487, 236975164806, 3554627472077, 56874039553218, 966858672404691, 17403456103284422, 330665665962404001, 6613313319248080002
Offset: 0
-
a:= proc(n) a(n):= `if`(n=0, 2, n*a(n-1)-n+2) end:
seq(a(n), n=0..30); # Alois P. Heinz, Feb 17 2014
-
f[n_] := n*(f[n - 1] - 1) + 2;f[0]=2; ff[n_]:=(1/(1+n))(1+E*Gamma[1+n, 1]-E*(n^2)*Gamma[1+n, 1]+E*n*Gamma[2+n, 1]) (Spindler)
Table[FunctionExpand[Gamma[n, 1] E] + 1, {n, 2, 29}] (* Vincenzo Librandi, Feb 17 2014 *)
A095722
E.g.f.: exp(x)/(1-x)^8.
Original entry on oeis.org
1, 9, 89, 961, 11265, 142601, 1940089, 28245729, 438351041, 7226001865, 126122874201, 2324074591169, 45094140207169, 919088049256521, 19633713260950265, 438708172312264801, 10234490436580101249
Offset: 0
-
With[{nn=20},CoefficientList[Series[Exp[x]/(1-x)^8,{x,0,nn}],x] Range[ 0,nn]!] (* Harvey P. Dale, May 26 2013 *)
Table[HypergeometricPFQ[{8, -n}, {}, -1], {n, 0, 20}] (* Benedict W. J. Irwin, May 27 2016 *)
Original entry on oeis.org
1, 3, 2, 11, 8, 6, 49, 38, 30, 24, 261, 212, 174, 144, 120, 1631, 1370, 1158, 984, 840, 720, 11743, 10112, 8742, 7584, 6600, 5760, 5040, 95901, 84158, 74046, 65304, 57720, 51120, 45360, 40320, 876809, 780908, 696750, 622704, 557400, 499680, 448560, 403200, 362880, 8877691, 8000882, 7219974, 6523224, 5900520, 5343120, 4843440, 4394880, 3991680, 3628800
Offset: 0
The top left corner of the array:
1, 3, 11, 49, 261, 1631, 11743
2, 8, 38, 212, 1370, 10112, 84158
6, 30, 174, 1158, 8742, 74046, 696750
24, 144, 984, 7584, 65304, 622704, 6523224
120, 840, 6600, 57720, 557400, 5900520, 68019240
720, 5760, 51120, 499680, 5343120, 62118720, 780827760
5040, 45360, 448560, 4843440, 56775600, 718709040, 9778048560
Topmost row:
A001339. For other rows and columns, see the information given in transpose
A276588.
-
T[r_, c_]:=Sum[Binomial[r, k](1 + c + k)!, {k, 0, r}]; Table[T[r - c, c], {r, 0, 10}, {c, 0, r}] // Flatten (* Indranil Ghosh, Apr 11 2017 *)
-
T(r, c) = sum(k=0, r, binomial(r, k)*(1 + c + k)!);
for(r=0, 10, for(c=0, r, print1(T(r - c, c),", ");); print();) \\ Indranil Ghosh, Apr 11 2017
-
from sympy import binomial, factorial
def T(r, c): return sum([binomial(r, k) * factorial(1 + c + k) for k in range(r + 1)])
for r in range(11): print([T(r - c, c) for c in range(r + 1)]) # Indranil Ghosh, Apr 11 2017
-
(define (A276589 n) (A276588bi (A025581 n) (A002262 n))) ;; Code for A276588bi given in A276588.
A023805
Xenodromes: all digits in base 11 are different.
Original entry on oeis.org
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 73, 74
Offset: 1
121 (in decimal) = 100 (base 11) is a member of A168186 but not a member of this sequence. - Robert Munafo, Jan 26 2010
156 is in A023805 but not in A168186. - Franklin T. Adams-Watters, Jan 26 2010
-
Select[Range[0, 100], Max[DigitCount[#, 11]] == 1 &] (* Paolo Xausa, Mar 22 2025 *)
A051256
Numbers formed from binomial coefficients (mod 2) interpreted as digits in factorial base.
Original entry on oeis.org
1, 3, 7, 33, 121, 843, 5167, 46233, 362881, 3991683, 40279687, 522910113, 6227383801, 93409304523, 1313941673647, 22324392524313, 355687428096001, 6758061133824003, 122000787836928007, 2561305169719296033
Offset: 0
a(5) = 1! + 2! + 5! + 6! = 843 (only the first, second, fifth and sixth terms are odd in row 5 of Pascal's Triangle).
-
A051256(n) := proc(n) local i; RETURN(add(((binomial(n,i) mod 2)*((i+1)!)),i=0..n)); end;
-
Table[Sum[(k+1)!Mod[Binomial[n,k],2],{k,0,n}],{n,0,20}] (* Harvey P. Dale, Feb 14 2013 *)
-
from math import factorial
def A051256(n):
return sum(0 if ~n & k else factorial(k+1) for k in range(n+1)) # Chai Wah Wu, Feb 08 2016
A089900
Square array, read by antidiagonals, where the n-th row is the n-th binomial transform of the factorials, starting with row 0: {1!,2!,3!,...}.
Original entry on oeis.org
1, 2, 1, 6, 3, 1, 24, 11, 4, 1, 120, 49, 18, 5, 1, 720, 261, 92, 27, 6, 1, 5040, 1631, 536, 159, 38, 7, 1, 40320, 11743, 3552, 1029, 256, 51, 8, 1, 362880, 95901, 26608, 7353, 1848, 389, 66, 9, 1, 3628800, 876809, 223456, 58095, 14384, 3125, 564, 83, 10, 1
Offset: 0
Note secondary diagonal: {(n+1)^(n+1)}; rows begin:
1, 2,. 6,. 24,. 120,.. 720,.. 5040,..
1, 3, 11,. 49,. 261,. 1631,. 11743,..
1,_4, 18,. 92,. 536,. 3552,. 26608,..
1, 5,_27, 159, 1029,. 7353,. 58095,..
1, 6, 38,_256, 1848, 14384, 121264,..
1, 7, 51, 389,_3125, 26595, 241015,..
1, 8, 66, 564, 5016,_46656, 456048,..
1, 9, 83, 787, 7701, 78077,_823543,..
-
t[n_, k_] := (n^(k+2) - Exp[n]*(n-k-1)*Gamma[k+2, n])/(k+1) // Round; Table[t[n-k, k], {n, 0, 9}, {k, n, 0, -1}] // Flatten (* Jean-François Alcover, Jun 24 2013 *)
-
T(n,k)=if(n<0 || k<0,0,sum(i=0,k,n^(k-i)*binomial(k,i)*(i+1)!))
A095740
E.g.f.: exp(x)/(1-x)^9.
Original entry on oeis.org
1, 10, 109, 1288, 16417, 224686, 3288205, 51263164, 848456353, 14862109042, 274743964621, 5346258202000, 109249238631169, 2339328151461718, 52384307381414317, 1224472783033479556, 29826054965115774145
Offset: 0
-
seq(simplify(hypergeom([9,-n],[],-1)),n=0..30); # Robert Israel, May 27 2016
-
Table[HypergeometricPFQ[{9, -n}, {}, -1], {n, 0, 20}] (* Benedict W. J. Irwin, May 27 2016 *)
Comments