cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 900 results. Next

A126193 Lesser of twin primes (A001359) of the form p = k^2+s such that q = k^4+s is also a lesser of twin primes, q > p and s >= 0.

Original entry on oeis.org

5, 17, 29, 41, 59, 71, 107, 137, 179, 191, 197, 227, 239, 269, 281, 311, 347, 419, 431, 461, 569, 599, 617, 641, 659, 809, 821, 827, 857, 881, 1019, 1049, 1061, 1091, 1151, 1229, 1277, 1289, 1301, 1319, 1427, 1451, 1481, 1487, 1607, 1619, 1667, 1697, 1721
Offset: 1

Views

Author

Tomas Xordan, Mar 07 2007

Keywords

Comments

p = q-k^4+k^2 where p and q are lesser of twin primes and p < q.
May be connected with the twin prime conjecture (see link).

Examples

			5 = 2^2+1 and 17 = 2^4+1; 5 and 17 are lesser of twin primes;
41 = 4^2+25 and 281 = 4^4+25; 41 and 281 are lesser of twin primes.
		

Crossrefs

Programs

  • Maple
    filter:= proc(p) local s,k;
      if not(isprime(p) and isprime(p+2)) then return false fi;
      for k from 2 do
        s:= p - k^2;
        if s < 0 then return false fi;
        if isprime(s+k^4) and isprime(s+k^4+2) then return true fi;
      od
    end proc:
    select(filter, [seq(i,i=5..2000, 6)]); # Robert Israel, Sep 15 2024
  • PARI
    {m=42; v=[]; for(k=2, m, for(s=1, (m+1)^2-1, if((p=k^2+s)p&&isprime(q)&&isprime(q+2), v=concat(v,p)))); v=listsort(List(v), 1); for(j=1, #v, print1(v[j], ","))} /* Klaus Brockhaus, Mar 09 2007 */

Extensions

Edited and checked by Klaus Brockhaus, Mar 09 2007
Definition corrected by Robert Israel, Sep 15 2024

A126251 a(n) = (p+2)!/p! where p is the n-th lesser twin prime, A001359(n).

Original entry on oeis.org

20, 42, 156, 342, 930, 1806, 3660, 5256, 10506, 11772, 19182, 22650, 32580, 37056, 39402, 52212, 57840, 73170, 79806, 97656, 121452, 176820, 187056, 213906, 273006, 325470, 360600, 382542, 412806, 436260, 656910, 676506, 686412, 737022, 778806
Offset: 1

Views

Author

Zerinvary Lajos, Mar 08 2007

Keywords

Crossrefs

Subsequence of A002378.

Programs

  • Maple
    ZL:=[]:for p from 1 to 1653 do if (isprime(p) and isprime(p+2)) then ZL:=[op(ZL),((p+2)!/p!)]; fi; od; print(ZL);
  • Mathematica
    #[[2]]!/#[[1]]!&/@Select[Partition[Prime[Range[200]],2,1],#[[2]]-#[[1]] == 2&] (* Harvey P. Dale, Feb 16 2020 *)

Formula

a(n) = 2*A082669(n).

Extensions

Name edited by Michel Marcus, Apr 29 2023

A139187 Smallest twin prime member A001359 of the form k!/n-1.

Original entry on oeis.org

5, 11, 239, 5, 7983359, 3
Offset: 1

Views

Author

Artur Jasinski, Apr 11 2008

Keywords

Comments

"Factorial" twin primes are a pair (k!/n-1, k!/n+1) = (A001359(j), A006512(j)).
Given n, the sequence shows the smallest a(n)=A001359(j) solving this pair equation.
The associated upper twin prime is A139188(n) = A006512(j) = A001359(j)+2 = a(n)+2, and the associated factorial index is k(n) = A139186(n).
The twin prime indices j(n) are 2, 3, 17, 2, 48525, 1.
a(7) is unknown, with k(7) > 25000. A continuation of the sequence, with unknown terms indicated by 0, is a(7)..a(50): 0, 453599, 0, 11, 0, 59, 0, 0, 2687, 0, 0, 0, 2688996956405759999, 5, 239, 0, 0, 29, 44960029111104307199, 0, 134399, 179, 0, 3, 0, 0, 0, 0, 1151, 100799, 0, 0, 536481791999, 17, 0, 0, 0, 141523199, 0, 1313375283986387731246850697141608641462271999999999, 0, 7559, 0, 8065829222532112711679999. - Hugo Pfoertner, Mar 30 2020

Examples

			For n=1, the smallest k is 3, where (3!/1-1,3!/1+1) = (5,7) = (A001359(2),A006512(2)).
For n=3, the smallest k is 6, where (6!/3-1,6!/3+1) = (239,241) = (A001359(17),A006512(17)).
		

Crossrefs

Programs

  • Mathematica
    a = {}; Do[k = 1; While[ ! (PrimeQ[(k! - n)/n] && PrimeQ[(k! + n)/n]), k++ ]; AppendTo[a, (k! - n)/n], {n, 1, 6}]; a

A182513 a(n) is the solution of equation A001359(x) = A182482(n).

Original entry on oeis.org

2, 3, 4, 8, 5, 8, 6, 14, 10, 7, 15, 8, 20, 22, 13, 14, 9, 10, 16, 17, 35, 30, 11, 23, 12, 20, 31, 76, 21, 13, 45, 14, 15, 36, 22, 23, 61, 16, 57, 17, 42, 69, 37, 46, 18, 33, 19, 41, 35, 27, 67, 20, 149, 52, 30, 76, 123, 21, 39, 171, 282, 50, 69, 41, 60, 84, 51, 98, 33, 22, 43
Offset: 1

Views

Author

Vladimir Shevelev, May 03 2012

Keywords

Crossrefs

Extensions

More terms from Ray Chandler, Sep 18 2019

A242918 Positions of smaller of twin primes in A001359 with index 5.

Original entry on oeis.org

11, 18, 21, 27, 43, 48, 62, 77, 107, 109, 110, 118, 131, 145, 172, 201, 216, 258, 260, 265, 289, 294, 301, 307, 315, 319, 340, 350, 363, 365, 367, 381, 442, 449, 451, 453, 491, 496, 500, 515, 522, 528, 540, 559, 569, 581, 603, 613, 616, 620, 623, 630, 659, 689
Offset: 1

Views

Author

Vladimir Shevelev, May 26 2014

Keywords

Comments

For the definition of the index of a twin prime pair, see the comment in A242767.

Crossrefs

Programs

Extensions

More terms from Peter J. C. Moses, May 26 2014

A242919 Positions of smaller of twin primes in A001359 with index 6.

Original entry on oeis.org

9, 13, 24, 26, 53, 59, 61, 63, 76, 88, 94, 100, 104, 115, 126, 146, 156, 160, 184, 203, 206, 210, 224, 229, 240, 266, 276, 279, 298, 309, 333, 338, 352, 386, 406, 415, 431, 435, 444, 450, 469, 473, 508, 525, 529, 535, 537, 546, 550, 576, 580, 615, 633, 634
Offset: 1

Views

Author

Vladimir Shevelev, May 26 2014

Keywords

Comments

For the definition of the index of a twin prime pair, see the comment in A242767.

Crossrefs

Programs

Extensions

More terms from Peter J. C. Moses, May 26 2014

A243096 Lesser of twin primes (A001359) such that both are full reptend primes (A001913).

Original entry on oeis.org

17, 59, 179, 821, 1019, 1301, 1619, 2141, 2339, 3257, 3299, 3461, 4217, 4259, 4337, 4421, 5417, 5501, 5657, 5741, 6659, 6701, 7457, 8819, 8861, 9341, 10139, 10457, 10859, 10937, 11057, 11699, 11939, 12377, 12821, 13337, 13901, 15137, 15581, 15737, 16979, 17417, 17579, 18059, 19139, 19541, 19697
Offset: 1

Views

Author

Robert G. Wilson v, Aug 18 2014

Keywords

Comments

A proper subset of both A001359 and A001913.
Number of terms < 10^k: 0, 2, 4, 26, 152, 1015, 7618, 56282, 436385, …, .

Crossrefs

Programs

  • Mathematica
    Select[ Prime@ Range@ 2300, MultiplicativeOrder[10, #] == # - 1 && MultiplicativeOrder[10, # + 2] == # + 1 &]
    Select[Partition[Prime[Range[2500]],2,1],#[[2]]-#[[1]]==2&& PrimitiveRoot[ #,10]=={10,10}&][[All,1]] (* Harvey P. Dale, Dec 02 2017 *)

Formula

Intersection of A001359 and A001913.

A270535 Integers k such that A001359(k) + A001359(k+3) = A001359(k+1) + A001359(k+2).

Original entry on oeis.org

5, 8, 10, 11, 15, 16, 17, 27, 36, 68, 69, 71, 111, 132, 189, 200, 212, 214, 234, 252, 262, 279, 317, 332, 343, 344, 364, 424, 426, 500, 506, 518, 520, 543, 563, 577, 606, 620, 658, 672, 696, 697, 737, 766, 882, 907, 982, 1009, 1064, 1087, 1089, 1091, 1162, 1164, 1172, 1226, 1256, 1268
Offset: 1

Views

Author

Altug Alkan, Mar 18 2016

Keywords

Comments

Integers k such that A006512(k) + A006512(k+3) = A006512(k+1) + A006512(k+2).
Integers k such that A014574(k) + A014574(k+3) = A014574(k+1) + A014574(k+2).

Examples

			5 is a term because A001359(5) = 29, A001359(6) = 41, A001359(7) = 59, A001359(8) = 71 and 29 + 71 = 41 + 59.
		

Crossrefs

Programs

  • Mathematica
    s = Select[Prime@ Range[10^6], PrimeQ[# + 2] &]; Select[Range@ 1300, s[[#]] + s[[# + 3]] == s[[# + 1]] + s[[# + 2]] &] (* after Robert G. Wilson v at A001359 *)
  • PARI
    t(n, p=3) = { while( p+2 < (p=nextprime( p+1 )) || n-->0, ); p-2}
    b(n) = t(n) + t(n+3) - t(n+1) - t(n+2);
    for(n=1, 2000, if(b(n) == 0, print1(n, ", ")));
    
  • PARI
    list(lim) = {my(k = 0, p1 = 2, t = [0, 0, 0, 0]); forprime(p2 = 3, lim, if(p2 - p1 == 2, k++; t = concat(t[2..4], p1); if(t[1] + t[4] == t[2] + t[3], print1(k-3, ", "))); p1 = p2);} \\ Amiram Eldar, Feb 22 2025

A276831 For a lesser p=A001359(n-1), n>=2, of twin primes, let B_k be the sequence defined as A159559 but with initial term k; a(n) is the smallest m such that B_(p+2)(m)-B_p(m) = max_{t>=2} (B_(p+2)(t)-B_p(t)).

Original entry on oeis.org

5, 17, 11, 5, 3, 17, 3, 11, 11, 5, 31, 107, 13, 333, 17, 5, 3, 3, 281, 5, 997, 3, 487, 659, 5178, 5, 15, 3, 23, 53, 13, 1567, 13, 13, 181, 3, 5, 443, 37, 21, 19, 11, 5, 3, 5, 5, 7, 20786, 13, 7, 5, 21, 3, 5, 17, 61, 31, 23, 7, 3, 11, 5, 11, 5, 3, 3, 157, 37
Offset: 2

Views

Author

Vladimir Shevelev, Sep 20 2016

Keywords

Examples

			Let n=2, p=A001359(1)=3. Then B_3(2)=3, B_3(3)=5, B_3(4)=6, B_3(5)=7, B_3(6)=8, B_3(7)=11, B_3(8)=12, B_3(9)=14, B_3(10)=15, B_3(11)=17;
Further, B_5(2)=5, B_5(3)=7, B_5(4)=8, B_5(5)=11, B_5(6)=12, B_5(7)=13, B_5(8)=14, B_5(9)=15, B_5(10)=16, B_5(11)=17 and, beginning with t=11,
B_3 merges with B_5. So, max(B_5(t)-B_3(t))=4 reaching at t=5 and t=6.
Thus a(2)=min(5,6)=5.
		

Crossrefs

Formula

B_(p+2)(a(n)) - B_p(a(n)) = A276826(n).

Extensions

More terms from Peter J. C. Moses, Sep 20 2016

A299196 Number of partitions of n into distinct parts that are lesser of twin primes (A001359).

Original entry on oeis.org

1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 2, 0, 1, 2, 0, 1, 1, 0, 1, 1, 0, 2, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 0, 1, 2, 1, 1, 2, 2, 2, 2, 1, 2, 2, 0, 2, 1, 0, 2, 1, 1, 3, 2, 1, 3, 2, 2, 2, 0, 2, 2, 0, 1, 2, 2, 2, 2, 3, 3, 3
Offset: 0

Views

Author

Ilya Gutkovskiy, Feb 04 2018

Keywords

Comments

For n > 0 let b(n) be the inverse Euler transform of a(n). It appears that, if p is the lesser of twin primes, then b(p) = 1 and b(2*p) = -1; otherwise b(n) = 0. - Georg Fischer, Aug 15 2020

Examples

			a(46) = 2 because we have [41, 5] and [29, 17].
		

Crossrefs

Programs

  • Maple
    P:= select(isprime,{seq(i,i=3..201,2)}):
    TP:= P intersect map(`-`,P,2):
    G:= mul(1+x^p,p=TP):
    seq(coeff(G,x,i),i=0..200); # Robert Israel, Dec 15 2024
  • Mathematica
    nmax = 105; CoefficientList[Series[Product[1 + Boole[PrimeQ[k] && PrimeQ[k + 2]] x^k, {k, 1, nmax}], {x, 0, nmax}], x]

Formula

G.f.: Product_{k>=1} (1 + x^A001359(k)).
Previous Showing 31-40 of 900 results. Next