cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 22 results. Next

A359760 Triangle read by rows. The Kummer triangle, the coefficients of the Kummer polynomials. K(n, k) = binomial(n, k) * oddfactorial(k/2) if k is even, otherwise 0, where oddfactorial(z) := (2*z)!/(2^z*z!).

Original entry on oeis.org

1, 1, 0, 1, 0, 1, 1, 0, 3, 0, 1, 0, 6, 0, 3, 1, 0, 10, 0, 15, 0, 1, 0, 15, 0, 45, 0, 15, 1, 0, 21, 0, 105, 0, 105, 0, 1, 0, 28, 0, 210, 0, 420, 0, 105, 1, 0, 36, 0, 378, 0, 1260, 0, 945, 0, 1, 0, 45, 0, 630, 0, 3150, 0, 4725, 0, 945, 1, 0, 55, 0, 990, 0, 6930, 0, 17325, 0, 10395, 0
Offset: 0

Views

Author

Peter Luschny, Jan 13 2023

Keywords

Comments

The Kummer numbers K(n, k) are a refinement of the oddfactorial numbers (A001147) in the sense that they are the coefficients of polynomials K(n, x) = Sum_{n..k} K(n, k) * x^k that take the value oddfactorial(n) at x = 1. The coefficients of x^n are the aerated oddfactorial numbers A123023.
These numbers appear in many different versions (see the crossrefs). They are the coefficients of the Chebyshev-Hermite polynomials in signed form when ordered in decreasing powers. Our exposition is based on the seminal paper by Kummer, which preceded the work of Chebyshev and Hermite for more than 20 years. They are also referred to as Bessel numbers of the second kind (Mansour et al.) when the odd powers are omitted.

Examples

			Triangle K(n, k) starts:
 [0] 1;
 [1] 1, 0;
 [2] 1, 0,  1;
 [3] 1, 0,  3, 0;
 [4] 1, 0,  6, 0,   3;
 [5] 1, 0, 10, 0,  15, 0;
 [6] 1, 0, 15, 0,  45, 0,   15;
 [7] 1, 0, 21, 0, 105, 0,  105, 0;
 [8] 1, 0, 28, 0, 210, 0,  420, 0, 105;
 [9] 1, 0, 36, 0, 378, 0, 1260, 0, 945, 0;
		

References

  • John Riordan, Introduction to Combinatorial Analysis, Dover (2002), pp. 85-86.

Crossrefs

Variants: Signed version: A073278. Other variants are the irregular triangle A100861 with zeros deleted, A066325 and A099174 with reversed rows, A111924, A144299, A104556.

Programs

  • Maple
    oddfactorial := proc(z) (2*z)! / (2^z*z!) end:
    K := (n, k) -> ifelse(irem(k, 2) = 1, 0, binomial(n, k) * oddfactorial(k/2)):
    seq(seq(K(n, k), k = 0..n), n = 0..11);
    # Alternative, as coefficients of polynomials:
    p := (n, x) -> 2^(n/2)*(-1/x^2)^(-n/2)*KummerU(-n/2, 1/2, -1/(2*x^2)):
    seq(print(seq(coeff(simplify(p(n, x)), x, k), k = 0..n)), n = 0 ..9);
    # Using the exponential generating function:
    egf := exp(x + (t*x)^2 / 2): ser := series(egf, x, 12):
    seq(print(seq(coeff(n! * coeff(ser, x, n), t, k), k = 0..n)), n = 0..9);
  • Mathematica
    K[n_, k_] := K[n, k] = Which[OddQ[k], 0, k == 0, 1, n == k, K[n - 1, n - 2], True, K[n - 1, k] n/(n - k)];
    Table[K[n, k], {n, 0, 11}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jan 25 2023 *)
  • Python
    from functools import cache
    @cache
    def K(n: int, k: int) -> int:
        if k %  2: return 0
        if n <  3: return 1
        if n == k: return K(n - 1, n - 2)
        return (K(n - 1, k) * n) // (n - k)
    for n in range(10): print([K(n, k) for k in range(n + 1)])

Formula

Let p(n, x) = 2^(n/2)*(-1/x^2)^(-n/2)*KummerU(-n/2, 1/2, -1/(2*x^2)).
p(n, 1) = A000085(n); p(n, sqrt(2)) = A047974(n); p(n, 2) = A115329(n);
p(2, n) = A002522(n) (n >= 1); p(3, n) = A056107(n) (n >= 1);
p(n, n) = A359739(n) (n >= 1); 2^n*p(n, 1/2) = A005425(n).
K(n, k) = [x^k] p(n, x).
K(n, k) = [t^k] (n! * [x^n] exp(x + (t*x)^2 / 2)).
K(n, n) = A123023(n).
K(n, n-1) = A123023(n + 1).
K(2*n, 2*n) = A001147(n).
K(4*n, 2*n) = A359761, the central terms without zeros.
K(2*n+2, 2*n) = A001879.
Sum_{k=0..n} (-1)^n * i^k * K(n, k) = A001464(n), ((the number of even involutions) - (the number of odd involutions) in the symmetric group S_n (Robert Israel)).
Sum_{k=0..n} Sum_{j=0..k} K(n, j) = A000085(n + 1).
For a recursion see the Python program.

A051684 Auxiliary sequence for calculation of number of even permutations of degree n and order exactly 2.

Original entry on oeis.org

0, -1, -3, -3, 5, 15, -21, -133, 27, 1215, 935, -12441, -23673, 138047, 469455, -1601265, -9112561, 18108927, 182135007, -161934625, -3804634785, -404007681, 83297957567
Offset: 1

Views

Author

Keywords

References

  • V. Jovovic, Some combinatorial characteristics of symmetric and alternating groups (in Russian), Belgrade, 1980, unpublished.

Crossrefs

Formula

a(n) = c(n, 2), where c(n, d)=Sum_{k=1..n} (-1)^(k+1)*(n-1)!/(n-k)! *Sum_{l:lcm{k, l}=d} c(n-k, l), c(0, 1)=1.
a(n)=2*A048099(n)-A001189(n)=A048099(n)-A001465(n) a(n)=(-1)^n*A001464(n)-1 a(n)=a(n-1)-(n-1)*(a(n-2)+1) E.g.f.: -e^x+e^(x-(1/2)*x^2) - Matthew J. White (mattjameswhite(AT)hotmail.com), Mar 02 2006
a(n) = Sum((-1)^j*n!/(2^j*j!*(n-2*j)!),j=1..floor(n/2)). - Vladeta Jovovic, Mar 06 2006

A104548 Triangle read by rows giving coefficients of Bessel polynomial p_n(x).

Original entry on oeis.org

0, 1, 0, 1, 1, 0, 1, 3, 3, 0, 1, 6, 15, 15, 0, 1, 10, 45, 105, 105, 0, 1, 15, 105, 420, 945, 945, 0, 1, 21, 210, 1260, 4725, 10395, 10395, 0, 1, 28, 378, 3150, 17325, 62370, 135135, 135135, 0, 1, 36, 630, 6930, 51975, 270270, 945945, 2027025, 2027025, 0
Offset: 0

Views

Author

Eric W. Weisstein, Mar 14 2005

Keywords

Examples

			Bessel polynomials begin with:
      x;
      x +     x^2;
    3*x +   3*x^2 +    x^3;
   15*x +  15*x^2 +  6*x^3 +    x^4;
  105*x + 105*x^2 + 45*x^3 + 10*x^4 + x^5;
  ...
Triangle of coefficients begins as:
  0;
  1,  0;
  1,  1    0;
  1,  3,   3     0;
  1,  6,  15,   15      0;
  1, 10,  45,  105,   105      0;
  1, 15, 105,  420,   945,   945       0;
  1, 21, 210, 1260,  4725, 10395,  10395       0;
  1, 28, 378, 3150, 17325, 62370, 135135, 135135    0;
		

Crossrefs

Essentially the same as A001498 (the main entry).

Programs

  • Magma
    A104548:= func< n,k | k eq n select 0 else Binomial(n-1,k)*Factorial(n+k-1)/(2^k*Factorial(n-1)) >;
    [A104548(n,k): k in [0..n], n in [0..13]]; // G. C. Greubel, Jan 02 2023
    
  • Mathematica
    T[n_, k_]:= If[k==n, 0, Binomial[n-1,k]*(n+k-1)!/(2^k*(n-1)!)];
    Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Jan 02 2023 *)
  • SageMath
    def A104548(n,k): return 0 if (k==n) else binomial(n-1,k)*factorial(n+k-1)/(2^k*factorial(n-1))
    flatten([[A104548(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Jan 02 2023

Formula

From G. C. Greubel, Jan 02 2023: (Start)
T(n, k) = binomial(n-1,k)*(n+k-1)!/(2^k*(n-1)!), with T(n, n) = 0.
Sum_{k=0..n} T(n, k) = A001515(n-1).
Sum_{k=0..n} (-1)^k*T(n, k) = A000806(n-1).
Sum_{k=0..floor(n/2)} T(n-k, k) = A000085(n-1).
Sum_{k=0..floor(n/2)} (-1)^k*T(n-k, k) = A001464(n-1). (End)

Extensions

T(0, 0) = 0 prepended by G. C. Greubel, Jan 02 2023

A328141 a(n) = a(n-1) - (n-2)*a(n-2), with a(0)=1, a(1)=2.

Original entry on oeis.org

1, 2, 2, 0, -4, -4, 12, 32, -40, -264, 56, 2432, 1872, -24880, -47344, 276096, 938912, -3202528, -18225120, 36217856, 364270016, -323869248, -7609269568, -808015360, 166595915136, 185180268416, -3813121694848, -8442628405248, 90698535660800, 318649502602496, -2220909495899904
Offset: 0

Views

Author

G. C. Greubel, Oct 04 2019

Keywords

Comments

Former title and formula of A122033, but not the data.

Crossrefs

Programs

  • GAP
    a:=[1,2];; for n in [3..35] do a[n]:=a[n-1]-(n-3)*a[n-2]; od; a;
  • Magma
    I:=[1,2]; [n le 2 select I[n] else Self(n-1) - (n-3)*Self(n-2): n in [1..35]];
    
  • Maple
    a:= proc (n) option remember;
    if n < 2 then n+1
    else a(n-1) - (n-2)*a(n-2)
    fi;
    end proc; seq(a(n), n = 0..35);
  • Mathematica
    a[n_]:= a[n]= If[n<2, n+1, a[n-1]-(n-2)*a[n-2]]; Table[a[n], {n,0,35}]
  • PARI
    my(m=35, v=concat([1,2], vector(m-2))); for(n=3, m, v[n] = v[n-1] - (n-3)*v[n-2] ); v
    
  • Sage
    def a(n):
        if n<2: return n+1
        else: return a(n-1) - (n-2)*a(n-2)
    [a(n) for n in (0..35)]
    

Formula

a(n) = a(n-1) - (n-2)*a(n-2), with a(0)=1, a(1)=2.
E.g.f.: 1 + sqrt(2*e*Pi)*( erf(1/sqrt(2)) + erf((x-1)/sqrt(2)) ), where erf(x) is the error function.
a(n) = 2*(-1)^(n-1)*A001464(n-1).
a(n) = 2*(1/sqrt(2))^(n-1) * Hermite(n-1, 1/sqrt(2)), n > 0.

A369755 Expansion of e.g.f. exp( (1 - (1+x)^4)/4 ).

Original entry on oeis.org

1, -1, -2, 2, 28, 44, -464, -3088, 1408, 135872, 726976, -2959936, -67261952, -293413888, 3054389248, 52458520064, 178569842176, -3909868400128, -60465254054912, -149165881689088, 6569005278939136, 98054837101881344, 158559568611401728, -14356527387138039808
Offset: 0

Views

Author

Seiichi Manyama, Jan 31 2024

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(exp((1-(1+x)^4)/4)))

Formula

a(0) = 1; a(n) = -(n-1)! * Sum_{k=1..min(4,n)} binomial(3,k-1) * a(n-k)/(n-k)!.
a(n) = Sum_{k=0..n} 4^k * Stirling1(n,k) * Bell_k(-1/4), where Bell_n(x) is n-th Bell polynomial.
D-finite with recurrence a(n) +a(n-1) +3*(n-1)*a(n-2) +3*(n-1)*(n-2)*a(n-3) +(n-1)*(n-2)*(n-3)*a(n-4)=0. - R. J. Mathar, Feb 02 2024

A369756 Expansion of e.g.f. exp( (1 - (1+x)^5)/5 ).

Original entry on oeis.org

1, -1, -3, -1, 49, 255, -275, -13105, -83775, 170495, 8290045, 69257055, -111005135, -9684015745, -109196883795, -31470300625, 17728458119425, 276531029694975, 904537471692925, -44728487203650625, -1000823562359108175, -7110596979389965825
Offset: 0

Views

Author

Seiichi Manyama, Jan 31 2024

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(exp((1-(1+x)^5)/5)))

Formula

a(0) = 1; a(n) = -(n-1)! * Sum_{k=1..min(5,n)} binomial(4,k-1) * a(n-k)/(n-k)!.
a(n) = Sum_{k=0..n} 5^k * Stirling1(n,k) * Bell_k(-1/5), where Bell_n(x) is n-th Bell polynomial.

A014775 Expansion of exp ( - x - (1/2)*x^2 - (1/6)*x^3).

Original entry on oeis.org

1, -1, 0, 1, 2, -6, -14, 20, 204, 28, -2584, -6876, 33760, 219296, -121848, -6020456, -15177904, 126126960, 950679424, -898745392, -38731873824, -123922308896, 1126028191520, 10547325457536, -5093629711808
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    With[{nmax = 30}, CoefficientList[Series[Exp[-x - x^2/2 - x^3/6], {x, 0, nmax}], x] * Range[0, nmax]!] (* Vaclav Kotesovec, Feb 09 2020 *)

A085386 E.g.f. cosh(x+x^2/2).

Original entry on oeis.org

1, 0, 1, 3, 4, 10, 46, 126, 316, 1296, 5356, 17380, 63856, 296088, 1264264, 4940040, 22302736, 110455936, 507711376, 2313783216, 11798364736, 61878663840, 309240315616, 1587272962528, 8792390355904, 48793502304000
Offset: 0

Views

Author

Paul Barry, Jun 27 2003

Keywords

Comments

a(n) is the number of involutions with an even number of cycles. - Geoffrey Critzer, Mar 17 2013

Crossrefs

Cf. A085387.

Programs

  • Mathematica
    nn=25;Range[0,nn]!CoefficientList[Series[Cosh[x+x^2/2],{x,0,nn}],x]  (* Geoffrey Critzer, Mar 17 2013 *)

Formula

a(n)=(A000085(n)+A001464(n))/2

A266503 Number of symmetric difference-closed 4-sets consisting of sets consisting of an even number of pairwise disjoint 2-subsets of {1,2,...,n}.

Original entry on oeis.org

0, 0, 0, 0, 0, 15, 105, 735, 4095, 26775, 162855, 1105335, 7187895, 51126075, 356831475, 2676468795, 19890931515, 156769986555, 1232704469115, 10178240218875, 84190426730235, 725667326178795
Offset: 1

Views

Author

John M. Campbell, Jan 24 2016

Keywords

Comments

A set of this form forms a group (isomorphic to the Klein four-group) under the symmetric difference operation. Such sets may be regarded in a natural way as Klein four-subgroups of the alternating group A_n.

Examples

			For example, there are a(n) = 15 sets of this form in the case whereby n=6:
{{{12}, {34}}, {{34}, {56}}, {{12}, {56}}, {}}
{{{12}, {35}}, {{35}, {46}}, {{12}, {46}}, {}}
{{{12}, {36}}, {{36}, {45}}, {{12}, {45}}, {}}
{{{13}, {24}}, {{24}, {56}}, {{13}, {56}}, {}}
{{{13}, {25}}, {{25}, {46}}, {{13}, {46}}, {}}
{{{13}, {26}}, {{26}, {45}}, {{13}, {45}}, {}}
{{{14}, {23}}, {{23}, {56}}, {{14}, {56}}, {}}
{{{14}, {25}}, {{25}, {36}}, {{14}, {36}}, {}}
{{{14}, {26}}, {{26}, {35}}, {{14}, {35}}, {}}
{{{15}, {23}}, {{23}, {46}}, {{15}, {46}}, {}}
{{{15}, {24}}, {{24}, {36}}, {{15}, {36}}, {}}
{{{15}, {26}}, {{26}, {34}}, {{15}, {34}}, {}}
{{{16}, {23}}, {{23}, {45}}, {{16}, {45}}, {}}
{{{16}, {24}}, {{24}, {35}}, {{16}, {35}}, {}}
{{{16}, {25}}, {{25}, {34}}, {{16}, {34}}, {}}
		

Crossrefs

Cf. A267840.

Programs

  • Mathematica
    a[n_] := n!*Sum[Sum[Sum[(2^(k-2*i-2*j))/(k!*(2*i-k)!*(2*j-k)!*(n-4*i-4*j+2*k)!*(KroneckerDelta[i, j]+KroneckerDelta[i, k]+1)!), {k, Max[i, 2*i+2*j-Floor[n/2]], Min[2*j, Floor[1/4*(4*i+4*j-1)]]}], {j, 1, i}], {i, 1, Floor[n/2]}] ; Print[Table[a[n], {n, 1, 22}]] ;
    Rest[CoefficientList[Series[E^x/3 - E^(-x*(x-2)/2)/8 - E^(x*(x+2)/2)/4 + E^(x*(3*x+2)/2)/24, {x, 0, 30}], x] * Range[0, 30]!] (* Vaclav Kotesovec, Apr 10 2016 *)

Formula

a(n) = n!*sum(sum(sum((2^(k-2*i-2*j))/(k!*(2*i-k)!*(2*j-k)!*(n-4*i-4*j+2*k)!*(delta(i, j)+delta(i, k)+1)!), k=max(i, 2*i+2*j-[n/2])..min(2*j, [1/4*(4*i+4*j-1)])), j=1..i), i=1..[n/2]).
From Vaclav Kotesovec, Apr 10 2016: (Start)
Recurrence: (n-6)*(n-4)*(n-2)*a(n) = (2*n - 7)*(2*n^2 - 14*n + 15)*a(n-1) + 3*(n-7)*(n-1)*(n^2 - 7*n + 11)*a(n-2) - (n-2)*(n-1)*(9*n^2 - 85*n + 189)*a(n-3) + (n-3)*(n-2)*(n-1)*(n^2 - n - 22)*a(n-4) - 2*(n-4)^2*(n-3)*(n-2)*(n-1)*a(n-5) - (n-5)*(n-4)*(n-3)*(n-2)*(n-1)*(3*n - 19)*a(n-6) + 3*(n-6)*(n-5)*(n-4)*(n-3)*(n-2)*(n-1)*a(n-7).
E.g.f.: exp(x)/3 - exp(-x*(x-2)/2)/8 - exp(x*(x+2)/2)/4 + exp(x*(3*x+2)/2)/24.
a(n) ~ 2^(-7/2) * 3^(n/2 - 1) * exp(sqrt(n/3) - n/2 - 1/12) * n^(n/2).
(End)
a(n) = 1/3 + (-1)^n*A001464(n)/8 - A000085(n)/4 + A115327(n)/24. - Vaclav Kotesovec, May 28 2016

A295289 Expansion of 1/(1 + x + x^2/(1 + 2*x + x^2/(1 + 3*x + x^2/(1 + 4*x + x^2/(1 + ...))))), a continued fraction.

Original entry on oeis.org

1, -1, 0, 3, -8, 9, 19, -141, 448, -759, -951, 14355, -71810, 238617, -421622, -1283181, 17699702, -110524503, 494858579, -1480719213, 12947578, 41684591673, -396443074054, 2562153015315, -12548536326806, 39305562343881, 52542301031459, -2158744047173613
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 19 2017

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 27; CoefficientList[Series[1/(1 + x + ContinuedFractionK[x^2, 1 + (k + 1) x, {k, 1, nmax}]), {x, 0, nmax}], x]
Previous Showing 11-20 of 22 results. Next