cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 372 results. Next

A208276 Number of Poulet numbers (or pseudoprimes to base 2, A001567) less than 2^n.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 1, 3, 8, 13, 19, 32, 45, 64, 89, 124, 175, 251, 361, 502, 693, 944, 1264, 1713, 2361, 3169, 4232, 5749, 7750, 10403, 14011, 18667, 24958, 33389, 44540, 59565, 79343, 105659, 141147, 188231, 250568, 333737, 445316, 593366, 792172, 1059097, 1416055, 1893726, 2532703, 3390284, 4540673, 6086093, 8167163, 10964612, 14731767, 19806649, 26651383, 35893886, 48374139, 65247459, 88069251, 118968378
Offset: 1

Views

Author

Washington Bomfim, Feb 25 2012

Keywords

Crossrefs

Programs

  • PARI
    count=0;for(e=1,32,forcomposite(n=2^(e-1),2^e-1,if(n%2 && Mod(2,n)^(n-1)==1,count++)); print1(count", ")); \\ Hans Loeblich, May 15 2019

Extensions

a(50)-a(64) from Feitsma's website, added by Max Alekseyev, Apr 23 2013

A303531 Numbers k such that both k and (k+1)/2 are Fermat pseudoprimes to base 2 (A001567).

Original entry on oeis.org

31417, 130561, 41541241, 208969201, 224074369, 392099401, 851934601, 5186365801, 33847795741, 65096562721, 91625968981, 104070261901, 111794455501, 165814673473, 180007280041, 184020124201, 276032114281, 408164260141, 620052300421, 1240013784241, 1244667503017
Offset: 1

Views

Author

Max Alekseyev, Apr 25 2018

Keywords

Comments

Numbers (k+1)/2 are listed in A298758.

Crossrefs

Subsequence of each of A001567, A216822, and A217465.

Programs

  • Mathematica
    Select[Cases[Import["https://oeis.org/A001567/b001567.txt", "Table"], {, }][[;; , 2]], !PrimeQ[(#+1)/2] && PowerMod[2, (#-1)/2, (#+1)/2] == 1 &] (* Amiram Eldar, Nov 09 2023 *)
  • PARI
    isF(n) = {Mod(2, n)^n==2 && !isprime(n) && n>1};
    isok(n) = (n%2) && isF(n) && isF((n+1)/2); \\ Michel Marcus, Apr 26 2018

Formula

a(n) = 2*A298758(n) - 1.

A374027 Lexicographically earliest sequence of numbers whose partial products are all Fermat pseudoprimes to base 2 (A001567).

Original entry on oeis.org

341, 41, 61, 181, 721, 3061, 6121, 9181, 27541, 36721, 91801, 100981, 238681, 21242521, 67665781, 477361, 48690721, 7160401, 76377601, 35802001, 83394792001, 7500519001, 60004152001, 3420236664001, 1380095496001, 13110907212001, 56583915336001, 128003857254001
Offset: 1

Views

Author

Amiram Eldar, Jun 26 2024

Keywords

Examples

			The partial products begin with 341 = A001567(1), 341 * 41 = 13981 = A001567(29), 341 * 41 * 61 = 852841 = A001567(234), 341 * 41 * 61 * 181 = 154364221 = A001567(2509), ... .
		

Crossrefs

Programs

  • Mathematica
    pspQ[n_] := PowerMod[2, n - 1, n] == 1; a[1] = 341; a[n_] := a[n] = Module[{k = 3, r = Product[a[i], {i, 1, n - 1}]}, While[!pspQ[k*r], k+=2]; k]; Array[a, 8]
  • PARI
    ispsp(n) = Mod(2, n)^(n-1) == 1;
    lista(len) = {my(prd = 1, c = 0, k = 341); while(c < len, while(!ispsp(prd * k), k += 2); prd *= k; print1(k,", "); c++; k = 3);}
    
  • PARI
    my(S=List(341),base=2); my(m = vecprod(Vec(S))); my(L = znorder(Mod(base, m))); print1(S[1], ", "); while(1, forstep(k=lift(1/Mod(m, L)), oo, L, if(gcd(m,k) == 1 && k > 1 && base % k != 0, if((m*k-1) % znorder(Mod(base, k)) == 0, print1(k, ", "); listput(S, k); L = lcm(L, znorder(Mod(base, k))); m *= k; break)))); \\ Daniel Suteu, Jun 30 2024

Extensions

a(21)-a(28) from Daniel Suteu, Jun 30 2024

A374028 Lexicographically earliest sequence of prime numbers whose partial products, starting from the second, are all Fermat pseudoprimes to base 2 (A001567).

Original entry on oeis.org

11, 31, 41, 61, 181, 54001, 6841, 54721, 110017981, 13681, 20521, 61561, 123121, 225721, 246241, 205201, 410401, 1128601, 513001, 3078001, 4617001, 73442619001, 96993612810001, 55404001, 7188669001, 16773561001, 67094244001, 821904489001, 29370505311001
Offset: 1

Views

Author

Amiram Eldar, Jun 26 2024

Keywords

Examples

			The partial products begin with 11, 11 * 31 = 341 = A001567(1), 11 * 31 * 41 = 13981 = A001567(29), 11 * 31 * 41 * 61 = 852841 = A001567(234), 11 * 31 * 41 * 61 * 181 = 154364221 = A001567(2509), ... .
		

Crossrefs

Programs

  • Mathematica
    pspQ[n_] := PowerMod[2, n - 1, n] == 1; a[1] = 11; a[n_] := a[n] = Module[{p = 2, r = Product[a[i], {i, 1, n - 1}]}, While[! pspQ[p*r], p = NextPrime[p]]; p]; Array[a, 10]
  • PARI
    ispsp(n) = Mod(2, n)^(n-1) == 1;
    lista(len) = {my(prd = 1, c = 0, k = 11); while(c < len, while(!ispsp(prd * k), k = nextprime(k+1)); prd *= k; print1(k,", "); c++; k = 3);}
    
  • PARI
    my(P=List(11), base=2); my(m = vecprod(Vec(P))); my(L = znorder(Mod(base, m))); print1(P[1], ", "); while(1, forstep(p=lift(1/Mod(m, L)), oo, L, if(isprime(p) && m % p != 0 && base % p != 0, if((m*p-1) % znorder(Mod(base, p)) == 0, print1(p, ", "); listput(P, p); L = lcm(L, znorder(Mod(base, p))); m *= p; break)))); \\ Daniel Suteu, Jun 30 2024

Extensions

a(23)-a(29) from Daniel Suteu, Jun 30 2024

A374029 Lexicographically earliest strictly increasing sequence of prime numbers whose partial products, starting from the second, are all Fermat pseudoprimes to base 2 (A001567).

Original entry on oeis.org

11, 31, 41, 61, 181, 54001, 54721, 61561, 123121, 225721, 246241, 430921, 523261, 800281, 2400841, 9603361, 28810081, 76826881, 96033601, 15909022209601, 133133396385601, 5791302742773601, 15443473980729601, 61773895922918401, 386086849518240001, 13706083157897520001
Offset: 1

Views

Author

Amiram Eldar, Jun 26 2024

Keywords

Comments

Are all the terms of the form 10*k+1?

Examples

			The partial products begin with 11, 11 * 31 = 341 = A001567(1), 11 * 31 * 41 = 13981 = A001567(29), 11 * 31 * 41 * 61 = 852841 = A001567(234), 11 * 31 * 41 * 61 * 181 = 154364221 = A001567(2509), ... .
		

Crossrefs

Programs

  • Mathematica
    pspQ[n_] := PowerMod[2, n - 1, n] == 1; a[1] = 11; a[n_] := a[n] = Module[{p = NextPrime[a[n-1]], r = Product[a[i], {i, 1, n - 1}]}, While[! pspQ[p*r], p = NextPrime[p]]; p]; Array[a, 10]
  • PARI
    ispsp(n) = Mod(2, n)^(n-1) == 1;
    lista(len) = {my(prd = 1, c = 0, k = 11); while(c < len, while(!ispsp(prd * k), k = nextprime(k+1)); prd *= k; print1(k,", "); c++);}
    
  • PARI
    my(P=List(11), base=2); my(m = vecprod(Vec(P))); my(L = znorder(Mod(base, m))); print1(P[1], ", "); while(1, forstep(p=lift(1/Mod(m, L)), oo, L, if(p > P[#P] && isprime(p) && base % p != 0, if((m*p-1) % znorder(Mod(base, p)) == 0, print1(p, ", "); listput(P, p); L = lcm(L, znorder(Mod(base, p))); m *= p; break)))); \\ Daniel Suteu, Jun 30 2024

Extensions

a(20)-a(26) from Daniel Suteu, Jun 30 2024

A074380 Sarrus numbers n (A001567) which satisfy mu(n) = -1 and which are not Super-Poulet numbers (A050217).

Original entry on oeis.org

561, 645, 1105, 1729, 1905, 2465, 2821, 4371, 6601, 8481, 8911, 10585, 12801, 13741, 13981, 15841, 16705, 25761, 29341, 30121, 30889, 33153, 34945, 41665, 46657, 52633, 57421, 68101, 74665, 83665, 87249, 88561, 91001, 93961, 113201
Offset: 1

Views

Author

Jani Melik, Sep 24 2002

Keywords

Comments

Some of these are Carmichael numbers, A002997: 561, 1105, 1729, ....

Crossrefs

Programs

  • Mathematica
    Select[ Range[115000], !PrimeQ[ # ] && OddQ[ # ] && PowerMod[2, # - 1, # ] == 1 && Union[ PowerMod[2, Drop[Divisors[ # ], 1], # ]] != {2} && MoebiusMu[ # ] != 1 &]
  • PARI
    is(n)=if(isprime(n) || Mod(2,n)^(n-1)!=1 || moebius(n)>=0, return(0)); fordiv(n, d, if(Mod(2, d)^d!=2, return(1))); 0 \\ Charles R Greathouse IV, Sep 01 2016

Extensions

Edited and extended by Robert G. Wilson v, Oct 03 2002

A212601 Intersection of A001567 and A212502.

Original entry on oeis.org

4033, 6601, 8321, 15841, 25761, 29341, 41041, 46657, 75361, 115921, 162401, 172081, 252601, 294409, 314821, 332949, 401401, 410041, 488881, 530881, 552721, 642001, 721801, 873181, 934021, 1004653, 1207361, 1461241, 1876393, 1909001, 2081713, 2085301, 2113921
Offset: 1

Views

Author

Keywords

Comments

Only 1 (mod 4) numbers have been found.

Crossrefs

Cf. A201629.
Cf. A001567 (pseudoprimes to base 2).
Cf. A212502 (pseudoprimes to base 1+2i).

Programs

  • Mathematica
    t[n_] := Which[Mod[n, 4] == 3, n + 1, Mod[n, 4] == 1, n - 1,  True,  n]; Select[1 + Range[99000], PowerMod[2, # - 1, #] == 1 && !PrimeQ[#] && Im[PowerMod[1 + 2I, t[#], #]] == 0 &]

A227905 Numbers of the form 4k+3 (A004767) that are Lucas pseudoprimes and Fermat pseudoprimes to base 2 (intersection of A005845 and A001567).

Original entry on oeis.org

741751, 1024651, 5481451, 31150351, 109437751, 139952671, 178482151, 284301751, 383425351, 395044651, 407282851, 417027451, 498706651, 582799951, 612816751, 620072251, 652969351, 738820351, 977755351, 1126587151, 1204176751, 1397357851, 1588247851, 1789167931
Offset: 1

Views

Author

Keywords

Comments

This sequence uses the Bruckman definition of "Lucas pseudoprime". There are 400,114 examples less than 2^64. - Dana Jacobsen, Jan 07 2015

Crossrefs

Cf. A004767 (4n+3).
Cf. A001567 (Fermat pseudoprimes to base 2), A005845 (Lucas pseudoprimes).

Programs

Extensions

More terms from Dana Jacobsen, Jan 07 2015
a(16)-a(24) from Amiram Eldar, Jun 27 2019

A346568 Fermat pseudoprimes to base 2 (A001567) k such that A003961(k) is also a Fermat pseudoprime to base 2.

Original entry on oeis.org

710533, 915981, 1293337, 2134277, 3542533, 13747361, 161216021, 206304961, 284166877, 748419127, 968283247, 1265740717, 2582246701, 4297753027, 10891270501, 11176136947, 11273608417, 11606768801, 12169503061, 13321141597, 14241379237, 17005529227, 19600350001
Offset: 1

Views

Author

Amiram Eldar, Jul 23 2021

Keywords

Comments

a(1) = 710533 = 487 * 1459 has 2 distinct prime divisors.
a(2) = 915981 = 3 * 11 * 41 * 677 has 4 distinct prime divisors.
a(58) = 176529862601 = 2141 * 6421 * 12841 is the least term with 3 distinct prime divisors.
a(6884) = 15314196673937701 = 19 * 31 * 41 * 71 * 109 * 281 * 331 * 881 is the least term with 8 distinct prime divisors.
a(111) = 619303584901 is the least term k such that A003961(k) is also a term.
a(30430) = 507728732614597601 is the least term k such that both A003961(k) and A003961(A003961(k)) are also terms.

Examples

			710533 = 487 * 1459 is a term since it is a Fermat pseudoprime to base 2, and A003961(710533) = 491 * 1471 = 722261 is also a Fermat pseudoprime to base 2.
		

Crossrefs

A346569 is a subsequence.

Programs

  • Mathematica
    psp = Cases[Import["https://oeis.org/A001567/b001567.txt", "Table"], {, }][[;; , 2]]; f[p_, e_] := NextPrime[p]^e; s[1] = 1; s[n_] := Times @@ f @@@ FactorInteger[n]; pspQ[n_] := PowerMod[2, n - 1, n] == 1; Select[psp, pspQ[s[#]] &]

A371759 a(n) is the smallest n-gonal number that is a Fermat pseudoprime to base 2 (A001567), or -1 if no such number exists.

Original entry on oeis.org

561, 1194649, 7957, 561, 23377, 341, 129889, 1105, 35333, 561, 204001, 31609, 2940337, 1105, 493697, 8481, 13981, 1905, 88561, 41665, 10680265, 1729, 107185, 264773, 449065, 6601, 2165801, 23001, 1141141, 13981, 272251, 4369, 17590957, 15841, 137149, 2821, 561
Offset: 3

Views

Author

Amiram Eldar, Apr 05 2024

Keywords

Comments

The corresponding indices of the n-gonal numbers are 33, 1093, 73, 17, 97, ... (A371760).

Examples

			a(4) = A001220(1)^2 = 1093^2 = 1194649. The only known square base-2 pseudoprimes are the squares of the Wieferich primes (A001220).
		

Crossrefs

Programs

  • Mathematica
    p[k_, n_] := ((n-2)*k^2 - (n-4)*k)/2; pspQ[n_] := CompositeQ[n] && PowerMod[2, n - 1, n] == 1; a[n_] := Module[{k = 2}, While[! pspQ[p[k, n]], k++]; p[k, n]]; Array[a, 50, 3]
  • PARI
    p(k, n) = ((n-2)*k^2 - (n-4)*k)/2;
    ispsp(n) = !isprime(n) && Mod(2, n)^(n-1) == 1;
    a(n) = {my(k = 2); while(!ispsp(p(k, n)), k++); p(k, n);}

Formula

a(n) = ((n-2)*k^2 - (n-4)*k)/2, where k = A371760(n).
Previous Showing 11-20 of 372 results. Next