cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-60 of 135 results. Next

A242576 Prime terms in A214828.

Original entry on oeis.org

13, 151, 277, 36313, 225949, 7129366889, 933784181621, 19397107178326126131136629644898891137047, 401151570474397232184569825031979125080583558010764826781295643008140597581801
Offset: 1

Views

Author

Robert Price, May 17 2014

Keywords

Comments

a(10) has 119 digits and thus is too large to display here. It corresponds to A214828(448).

Crossrefs

Programs

  • Mathematica
    a={1,6,6}; For[n=3, n<=1000, n++, sum=Plus@@a; If[PrimeQ[sum], Print[sum]]; a=RotateLeft[a]; a[[3]]=sum]
    Select[LinearRecurrence[{1,1,1},{1,6,6},350],PrimeQ] (* Harvey P. Dale, Jul 21 2018 *)
  • PARI
    my(x='x+O('x^500)); select(isprime, Vec((1+5*x-x^2)/(1-x-x^2-x^3))) \\ Michel Marcus, Jun 16 2025

A243623 Prime terms in A214829.

Original entry on oeis.org

7, 29, 1087, 1999, 3677, 6763, 5487349608898607, 115507410616162687, 878001744429057971864287, 210582098197038415344728317608265501, 870277059555114378903885645581650740066907
Offset: 1

Views

Author

Robert Price, Jun 07 2014

Keywords

Comments

a(12) has 114 digits and thus is too large to display here. It corresponds to A214829(426).

Crossrefs

Programs

  • Maple
    f:= gfun:-rectoproc({a(n) = a(n-1) + a(n-2) + a(n-3), a(0) = 1, a(1) = 7, a(2) = 7},a(n),remember):
    select(isprime, map(f, [$2..1000])); # Robert Israel, Sep 02 2024
  • Mathematica
    a={1,7,7}; Print["7"]; Print["7"]; For[n=3, n<=1000, n++, sum=Plus@@a; If[PrimeQ[sum], Print[sum]]; a=RotateLeft[a]; a[[3]]=sum]

Extensions

7 inserted as a(1) by Robert Israel, Sep 02 2024

A247192 Indices of primes in the hexanacci numbers sequence A000383.

Original entry on oeis.org

7, 9, 30, 31, 33, 46, 52, 54, 82, 102, 109, 124, 210, 301, 351, 365, 369, 1045, 2044, 2125, 2143, 2815, 4377, 4754, 4893, 7310, 11558, 17602, 17929, 28389, 32100, 44298, 106725, 151678, 197953
Offset: 1

Views

Author

Robert Price, Dec 03 2014

Keywords

Comments

a(36) > 2*10^5.

Crossrefs

Programs

  • Mathematica
    a={1,1,1,1,1}; For[n=5, n<=1000, n++, sum=Plus@@a; If[PrimeQ[sum], Print[n]]; a=RotateLeft[a]; a[[5]]=sum]

A248920 Indices of primes in the pentanacci numbers sequence A000322.

Original entry on oeis.org

5, 7, 13, 18, 19, 34, 35, 38, 43, 48, 188, 286, 450, 501, 759, 1446, 2021, 2419, 2997, 3715, 5677, 13566, 46303, 57174, 108844, 117145, 166683, 178863
Offset: 1

Views

Author

Robert Price, Oct 16 2014

Keywords

Comments

a(29) > 2*10^5.

Crossrefs

Programs

  • Mathematica
    a={1,1,1,1,1}; For[n=5, n<=1000, n++, sum=Plus@@a; If[PrimeQ[sum], Print[n]]; a=RotateLeft[a]; a[[5]]=sum]

A278044 Length of tribonacci representation of n (cf. A278038).

Original entry on oeis.org

1, 1, 2, 2, 3, 3, 3, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8
Offset: 0

Views

Author

N. J. A. Sloane, Nov 18 2016

Keywords

Comments

For n>=2, n appears A001590(n+2) times. - John Keith, May 23 2022

Crossrefs

Cf. A001590.
Similar to, but strictly different from, A201052.

Programs

  • Mathematica
    t[1] = 1; t[2] = 2; t[3] = 4; t[n_] := t[n] = t[n - 1] + t[n - 2] + t[n - 3]; a[0] = 1; a[n_] := Module[{k = 1}, While[t[k] <= n, k++]; k - 1]; Array[a, 100, 0] (* Amiram Eldar, Mar 04 2022 *)

Formula

a(n) = A278042(n) + A278043(n).

A000308 a(n) = a(n-1)*a(n-2)*a(n-3) with a(1)=1, a(2)=2 and a(3)=3.

Original entry on oeis.org

1, 2, 3, 6, 36, 648, 139968, 3265173504, 296148833645101056, 135345882205792807436868315512832, 130876399105969522361889021452224949874232743897657526714368
Offset: 1

Views

Author

Keywords

Examples

			a(6)=36*6*3=648.
		

Crossrefs

Programs

Formula

a(n) = 2^A001590(n-1)*3^A000073(n-1). - Henry Bottomley, Jul 16 2001

A061282 Minimal number of steps to get from 0 to n by (a) adding 1 or (b) multiplying by 3. A stopping problem: begin with n and at each stage if a multiple of 3 divide by 3, otherwise subtract 1.

Original entry on oeis.org

0, 1, 2, 2, 3, 4, 3, 4, 5, 3, 4, 5, 4, 5, 6, 5, 6, 7, 4, 5, 6, 5, 6, 7, 6, 7, 8, 4, 5, 6, 5, 6, 7, 6, 7, 8, 5, 6, 7, 6, 7, 8, 7, 8, 9, 6, 7, 8, 7, 8, 9, 8, 9, 10, 5, 6, 7, 6, 7, 8, 7, 8, 9, 6, 7, 8, 7, 8, 9, 8, 9, 10, 7, 8, 9, 8, 9, 10, 9, 10, 11, 5, 6, 7, 6, 7, 8, 7, 8, 9, 6, 7, 8, 7, 8, 9, 8, 9, 10, 7, 8
Offset: 0

Views

Author

Henry Bottomley, Jun 06 2001

Keywords

Comments

n > 0 occurs A001590(n+2) times in this sequence. - Peter Kagey, Jul 19 2015
a(n) gives the number of iterations of A260316 to reach 0. - Peter Kagey, Jul 22 2015

Examples

			a(25)=7 since 25=((0+1+1)*3+1+1)*3+1.
		

Crossrefs

Analogous sequences with a different multiplier k: A056792 (k=2), A260112 (k=4).

Programs

  • Haskell
    c i = if i `mod` 3 == 0 then i `div` 3 else i - 1
    b 0 foldCount = foldCount
    b sheetCount foldCount = b (c sheetCount) (foldCount + 1)
    a061282 n = b n 0 -- Peter Kagey, Sep 02 2015
  • Maple
    a:= n-> (l-> nops(l)+add(i, i=l)-1)(convert(n, base, 3)):
    seq(a(n), n=0..105);  # Alois P. Heinz, Jul 16 2015
  • PARI
    a(n)=sumdigits(n,3)+#digits(n,3)-1 \\ Charles R Greathouse IV, Jul 16 2015
    

Formula

a(n) = A062153(n) + A053735(n) = (number of base 3 digits of n) + (sum of base 3 digits of n)-1. a(3n) = a(n)+1, a(3n+1) = a(n)+2, a(3n+2) = a(n)+3; a(0)=0, a(1)=1, a(2)=2.

A077988 Expansion of 1/(1+2*x-2*x^3).

Original entry on oeis.org

1, -2, 4, -6, 8, -8, 4, 8, -32, 72, -128, 192, -240, 224, -64, -352, 1152, -2432, 4160, -6016, 7168, -6016, 0, 14336, -40704, 81408, -134144, 186880, -210944, 153600, 66560, -555008, 1417216, -2701312, 4292608, -5750784, 6098944, -3612672, -4276224, 20750336, -48726016, 88899584
Offset: 0

Views

Author

N. J. A. Sloane, Nov 17 2002

Keywords

Crossrefs

Programs

  • GAP
    a:=[1,-2,4];; for n in [4..50] do a[n]:=-2*a[n-1]+2*a[n-3]; od; a; # G. C. Greubel, Jun 25 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 50); Coefficients(R!( 1/(1+2*x-2*x^3) )); // G. C. Greubel, Jun 25 2019
    
  • Mathematica
    LinearRecurrence[{-2, 0, 2}, {1, -2, 4}, 50] (* Vladimir Joseph Stephan Orlovsky, May 25 2011 *)
    CoefficientList[Series[1/(1+2x-2x^3),{x,0,50}],x] (* Harvey P. Dale, May 21 2024 *)
  • PARI
    my(x='x+O('x^50)); Vec(1/(1+2*x-2*x^3)) \\ G. C. Greubel, Jun 25 2019
    
  • Sage
    (1/(1+2*x-2*x^3)).series(x, 50).coefficients(x, sparse=False) # G. C. Greubel, Jun 25 2019
    

Formula

a(n) = (-1)^n * A077940(n). - G. C. Greubel, Jun 25 2019

A078046 Expansion of (1-x)/(1 + x + x^2 - x^3).

Original entry on oeis.org

1, -2, 1, 2, -5, 4, 3, -12, 13, 2, -27, 38, -9, -56, 103, -56, -103, 262, -215, -150, 627, -692, -85, 1404, -2011, 522, 2893, -5426, 3055, 5264, -13745, 11536, 7473, -32754, 36817, 3410, -72981, 106388, -29997, -149372, 285757, -166382, -268747, 720886, -618521, -371112, 1710519, -1957928
Offset: 0

Views

Author

N. J. A. Sloane, Nov 17 2002

Keywords

Comments

The root of the denominator [1 + x + x^2 - x^3] is the tribonacci constant.
This is the negative of the tribonacci numbers, signature (0, 1, 0), in reverse order, starting from A001590(-1), going backwards A001590(-2), A001590(-3), ... - Peter M. Chema, Dec 31 2016

Examples

			G.f. = 1 - 2*x + x^2 + 2*x^3 - 5*x^4 + 4*x^5 + 3*x^6 - 12*x^7 + 13*x^8 + ...
		

Crossrefs

First differences of A057597.
Cf. A001590.

Programs

  • Mathematica
    a[ n_] := If[ n >= 0, SeriesCoefficient[ (1 - x) / (1 + x + x^2 - x^3), {x, 0, n}], SeriesCoefficient [ -x^2 (1 - x) / (1 - x - x^2 - x^3),{x, 0, -n}]]; (* Michael Somos, Jun 01 2014 *)
  • PARI
    Vec((1-x)/(1+x+x^2-x^3)+O(x^99)) \\ Charles R Greathouse IV, Sep 26 2012
    
  • PARI
    {a(n) = if( n>=0, polcoeff( (1 - x) / (1 + x + x^2 - x^3) + x * O(x^n), n), polcoeff( -x^2 * (1 - x) / (1 - x - x^2 - x^3) + x * O(x^-n), -n))}; /* Michael Somos, Jun 01 2014 */

Formula

G.f.: (1-x)/(1+x+x^2-x^3).
Recurrence: a(n) = a(n-3) - a(n-2) - a(n-1) for n > 2.
a(-1 - n) = - A001590(n). - Michael Somos, Jun 01 2014

A099328 Number of Catalan knight paths from (0,0) to (n,0) in the region between and on the lines y=0 and y=3. (See A096587 for the definition of Catalan knight.).

Original entry on oeis.org

1, 0, 1, 0, 2, 2, 8, 8, 21, 28, 69, 108, 226, 370, 736, 1280, 2473, 4392, 8281, 14920, 27874, 50706, 94088, 171880, 317693, 582116, 1073853, 1970836, 3630914, 6669730, 12279296, 22568896, 41533777, 76360464, 140493041, 258344528, 475256898
Offset: 1

Views

Author

Clark Kimberling, Oct 12 2004

Keywords

Examples

			a(6) counts 8 paths from (0,0) to (6,0); the final move in 5 of the paths is from the point (5,2) and the final move in the other 3 paths is from (4,1).
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{1,1,-1,3,1,1,-1},{1,0,1,0,2,2,8},40] (* Harvey P. Dale, Aug 11 2017 *)

Formula

Taking A099328 to A099331 as the rows of an array T, the recurrences for these row sequences are given for n>=2 by T(n, 0) = T(n-1, 2) + T(n-2, 1), T(n, 1) = T(n-1, 3) + T(n-2, 0) + T(n-2, 2), T(n, 2) = T(n-1, 0) + T(n-2, 1) + T(n-2, 3), T(n, 3) = T(n-1, 1) + T(n-2, 2), with initial values T(0, 0)=1, T(1, 2)=1.
From Chai Wah Wu, Aug 09 2016: (Start)
a(n) = a(n-1) + a(n-2) - a(n-3) + 3*a(n-4) + a(n-5) + a(n-6) - a(n-7) for n > 7.
G.f.: x*(1 - x - 2*x^4)/((x^4 - 2*x^3 - 1)*(x^3 + x^2 + x - 1)). (End)
2*a(n) = A001590(n)-(-1)^n*( A052922(n-1)+A052922(n-3)) . - R. J. Mathar, Nov 22 2024
Previous Showing 51-60 of 135 results. Next