cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 20 results.

A110523 Expansion of (1 + x)/(1 + x + 3*x^2).

Original entry on oeis.org

1, 0, -3, 3, 6, -15, -3, 48, -39, -105, 222, 93, -759, 480, 1797, -3237, -2154, 11865, -5403, -30192, 46401, 44175, -183378, 50853, 499281, -651840, -846003, 2801523, -263514, -8141055, 8931597, 15491568, -42286359, -4188345, 131047422, -118482387, -274659879, 630107040, 193872597
Offset: 0

Views

Author

Paul Barry, Jul 24 2005

Keywords

Comments

Row sums of number triangle A110522.
The sequence a(n) is conjugate with A214733 since the following alternative relations: either ((-1 + i*sqrt(11))/2)^n = a(n) + A214733(n)*(-1 + i*sqrt(11))/2 or ((-1 - i*sqrt(11))/2)^n = a(n) + A214733(n)*(-1 - i*sqrt(11))/2. We have a(n+1) = -3*A214733(n), A214733(n+1) = a(n) - A214733(n). We note that sequences A110512 and A001607 are conjugated in a similar way. The above relations are connected with the Gauss sums, for example if e := exp(i*2Pi/11) then e + e^3 + e^4 + e^5 + e^9 = (-1 + i*sqrt(11))/2, and e^2 + e^6 + e^7 + e^8 + e^10 = (-1 - i*sqrt(11))/2, which is equivalent to the system of sums: Sum_{k=1..5} cos(2Pi*k/11) = -1/2 and Sum_{k=1..5} sin(2Pi*k/11) = sqrt(11)/2, and which is equivalent to the system of products: P_{k=1..5} cos(2Pi*k/11) = -1/32 and P_{k=1..5} sin(2Pi*k/11) = sqrt(11)/32 - for details see Witula's book. Lastly we note that ((-1 + i*sqrt(11))/2)^n + ((-1 - i*sqrt(11))/2)^n = 2*a(n) - A214733(n). - Roman Witula, Jul 27 2012

References

  • Roman Witula, On Some Applications of Formulae for Unimodular Complex Numbers, Jacek Skalmierski's Press, Gliwice 2011.

Crossrefs

Programs

  • Magma
    [n le 2 select 2-n else -(Self(n-1) +3*Self(n-2)): n in [1..50]]; // G. C. Greubel, Dec 28 2023
    
  • Mathematica
    CoefficientList[Series[(1+x)/(1+x+3*x^2), {x,0,50}], x] (* G. C. Greubel, Aug 30 2017 *)
    LinearRecurrence[{-1,-3},{1,0},40] (* Harvey P. Dale, Jul 02 2022 *)
  • PARI
    my(x='x+O('x^50)); Vec((1+x)/(1+x+3*x^2)) \\ G. C. Greubel, Aug 30 2017
    
  • SageMath
    @CachedFunction # a = A110523
    def a(n): return 1-n if n<2 else -a(n-1) -3*a(n-2)
    [a(n) for n in range(41)] # G. C. Greubel, Dec 28 2023

Formula

a(n) = Sum_{k=0..n} Sum_{j=0..n} (-1)^(n-j)*C(n, j)*(-3)^(j-k)*C(k, j-k).
From Roman Witula, Jul 27 2012: (Start)
a(n+2) + a(n+1) + 3*a(n) = 0.
a(n+1) = (-1)^n*(3*i*sqrt(11)/11)*(((1 + i*sqrt(11))/2)^(n-1) - ((1 - i*sqrt(11))/2)^(n-1)). (End)
From G. C. Greubel, Dec 28 2023: (Start)
a(n) = (-1)^n*3^((n-1)/2)*( sqrt(3)*ChebyshevU(n, 1/(2*sqrt(3))) - ChebyshevU(n-1, 1/(2*sqrt(3))) ).
a(n) = A106852(n) - A106852(n-1).
a(n) = (-1)^n*( A214733(n+1) + A214733(n) ). (End)
E.g.f.: exp(-x/2)*(sqrt(11)*cos(sqrt(11)*x/2) + sin(sqrt(11)*x/2))/sqrt(11). - Stefano Spezia, Jul 27 2025

A167433 Row sums of the Riordan array (1-4x+4x^2, x(1-2x)) (A167431).

Original entry on oeis.org

1, -3, -1, 5, 7, -3, -17, -11, 23, 45, -1, -91, -89, 93, 271, 85, -457, -627, 287, 1541, 967, -2115, -4049, 181, 8279, 7917, -8641, -24475, -7193, 41757, 56143, -27371, -139657, -84915, 194399, 364229, -24569, -753027, -703889, 802165, 2209943
Offset: 0

Views

Author

Paul Barry, Nov 03 2009

Keywords

Comments

The sequences A001607, A077020, A107920, A167433, A169998 are all essentially the same except for signs.
Variants are A107920 and A001607.

Programs

  • Mathematica
    a[n_] := Sin[n*ArcTan[Sqrt[7]]]; FullSimplify[Join[{1}, Table[- (2^(n/2 + 1)/Sqrt[7])*(2*a[n] + Sqrt[2]*a[n + 1]), {n, 1, 100}]]] (* or *) Join[{1}, LinearRecurrence[{1,-2},{-3,-1},100]] (* G. C. Greubel, Jun 13 2016 *)

Formula

G.f.: (1-4x+4x^2)/(1-x+2x^2).
From G. C. Greubel, Jun 13 2016: (Start)
a(n) = a(n-1) - 2*a(n-2).
a(n) = -(2^((n+2)/2)/sqrt(7))*( 2*sin(n*arctan(sqrt(7))) + sqrt(2)*sin((n+1)*arctan(sqrt(7))) ), n>=1, and a(0)=1. (End)

A105578 a(n+3) = 2a(n+2) - 3a(n+1) + 2a(n); a(0) = 1, a(1) = 1, a(2) = 0.

Original entry on oeis.org

1, 1, 0, -1, 0, 3, 4, -1, -8, -5, 12, 23, 0, -45, -44, 47, 136, 43, -228, -313, 144, 771, 484, -1057, -2024, 91, 4140, 3959, -4320, -12237, -3596, 20879, 28072, -13685, -69828, -42457, 97200, 182115, -12284, -376513, -351944, 401083, 1104972, 302807, -1907136, -2512749, 1301524, 6327023, 3723976
Offset: 0

Views

Author

Creighton Dement, Apr 14 2005

Keywords

Comments

Floretion Algebra Multiplication Program, FAMP Code: ibaseiseq[.5'j + .5'k + .5j' + .5k' + .5'ii' + .5e]

Crossrefs

Equals (A107920(n) + 1)/2.

Programs

Formula

a(n) - a(n+1) = A001607(n); a(n+2) - 2a(n+1) + a(n) = - A078020(n).
G.f.: -(x^2-x+1) / ((x-1)*(2*x^2-x+1)). - Colin Barker, Feb 08 2015

A169998 a(0)=1, a(1)=1; thereafter a(n) = -a(n-1) - 2*a(n-2).

Original entry on oeis.org

1, 1, -3, 1, 5, -7, -3, 17, -11, -23, 45, 1, -91, 89, 93, -271, 85, 457, -627, -287, 1541, -967, -2115, 4049, 181, -8279, 7917, 8641, -24475, 7193, 41757, -56143, -27371, 139657, -84915, -194399, 364229, 24569, -753027, 703889, 802165, -2209943, 605613, 3814273, -5025499, -2603047
Offset: 0

Views

Author

N. J. A. Sloane, Aug 29 2010

Keywords

Comments

Cassels, following Nagell, shows that a(n) = +- 1 only for n = 1, 2, 3, 5, 13.
The sequences A001607, A077020, A107920, A167433, A169998 are all essentially the same except for signs.

References

  • J. W. S. Cassels, Local Fields, Cambridge, 1986, see p. 67.

Programs

  • Maple
    f:=proc(n) option remember; if n <= 1 then 1 else -f(n-1)-2*f(n-2); fi; end;
  • Mathematica
    LinearRecurrence[{-1, -2}, {1, 1}, 46] (* Jean-François Alcover, Feb 23 2024 *)
  • PARI
    a(n)=([0,1;-2,-1]^n*[1;1])[1,1] \\ Charles R Greathouse IV, Jun 11 2015

Formula

G.f.: ( 1+2*x ) / ( 1+x+2*x^2 ). - R. J. Mathar, Jul 14 2011

A113726 A Jacobsthal convolution.

Original entry on oeis.org

1, 0, 1, 4, 5, 8, 25, 44, 77, 176, 353, 660, 1365, 2776, 5417, 10876, 21981, 43648, 87153, 175076, 349669, 698280, 1398585, 2797260, 5590381, 11184720, 22373761, 44735284, 89474165, 178969208, 357910345, 715807004, 1431683837, 2863325216
Offset: 0

Views

Author

Paul Barry, Nov 08 2005

Keywords

Comments

Convolution of A001045(n+1) and A001607(n+1).

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{0,1,4,4},{1,0,1,4},40] (* Harvey P. Dale, Apr 30 2025 *)

Formula

G.f.: 1/((1-x-2*x^2)*(1+x+2*x^2)).
a(n) = a(n-2) + 4*a(n-3) + 4*a(n-4).
a(n) = Sum_{k=0..floor(n/2)} C(n-k, k)*2^k*(1+(-1)^(n-k))/2.
a(n) = 2^n/3 + (-1)^n/6 + A001607(n+1)/2. - R. J. Mathar, Aug 23 2011
a(n) = sum(A128099(n, n-2*k), k=0..floor(n/2)). - Johannes W. Meijer, Aug 28 2013

A107443 Expansion of g.f.: (1+3*x^2)/((1-x)*(1+x+2*x^2)*(1-x+2*x^2)).

Original entry on oeis.org

1, 1, 1, 1, -3, -3, 9, 9, -11, -11, 1, 1, 45, 45, -135, -135, 229, 229, -143, -143, -483, -483, 2025, 2025, -4139, -4139, 4321, 4321, 3597, 3597, -28071, -28071, 69829, 69829, -97199, -97199, 12285, 12285, 351945, 351945, -1104971, -1104971, 1907137, 1907137, -1301523, -1301523, -3723975, -3723975
Offset: 0

Views

Author

Creighton Dement, May 26 2005

Keywords

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 50); Coefficients(R!( (1+3*x^2)/((1-x)*(1+3*x^2+4*x^4)) )); // G. C. Greubel, Mar 24 2024
    
  • Maple
    with(gfun): seriestolist(series((3*x^2+1)/((1-x)*(2*x^2+x+1)*(2*x^2-x+1)), x=0,50));
  • Mathematica
    CoefficientList[Series[(1+3*x^2)/((1-x)*(1+3*x^2+4*x^4)), {x,0,50}], x] (* G. C. Greubel, Mar 24 2024 *)
  • SageMath
    def A107443_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( (1+3*x^2)/((1-x)*(1+3*x^2+4*x^4)) ).list()
    A107443_list(50) # G. C. Greubel, Mar 24 2024

Formula

a(2n) = a(2n+1) = A174565(n).
a(n) = (1 - 2*(-1)^n*A001607(n) + A001607(n+1))/2. - G. C. Greubel, Mar 24 2024

A172250 Triangle, read by rows, given by [0,1,-1,0,0,0,0,0,0,0,...] DELTA [1,-1,1,0,0,0,0,0,0,0,...] where DELTA is the operator defined in A084938.

Original entry on oeis.org

1, 0, 1, 0, 1, 0, 0, 0, 2, -1, 0, 0, 1, 1, -1, 0, 0, 0, 3, -2, 0, 0, 0, 0, 1, 3, -4, 1, 0, 0, 0, 0, 4, -2, -2, 1, 0, 0, 0, 0, 1, 6, -9, 3, 0, 0, 0, 0, 0, 0, 5, 0, -9, 6, -1, 0, 0, 0, 0, 0, 1, 10, -15, 3, 3, -1, 0, 0, 0, 0, 0, 0, 6, 5, -24, 18, -4, 0, 0, 0, 0, 0, 0, 0, 1, 15, -20, -6, 18, -8, 1
Offset: 0

Views

Author

Philippe Deléham, Jan 29 2010

Keywords

Examples

			Triangle begins:
  1;
  0,  1;
  0,  1,  0;
  0,  0,  2, -1;
  0,  0,  1,  1, -1;
  0,  0,  0,  3, -2,  0;
  0,  0,  0,  1,  3, -4,  1;
  0,  0,  0,  0,  4, -2, -2,  1; ...
		

Crossrefs

Cf. A101950.

Formula

T(n,k) = T(n-1,k-1) + T(n-2,k-1) - T(n-2,k-2), T(0,0)=1, T(n,k) = 0 if k > n or if k < 0.
Sum_{k=0..n} T(n,k)*x^k = (-1)^n*A088139(n+1), A001607(n+1), A000007(n), A000012(n), A099087(n), A190960(n+1) for x = -2, -1, 0, 1, 2, 3 respectively. - Philippe Deléham, Feb 15 2012
G.f.: 1/(1-y*x+y*(y-1)*x^2). - Philippe Deléham, Feb 15 2012

A078033 Expansion of (1-x) / (1+x^2+2*x^3).

Original entry on oeis.org

1, -1, -1, -1, 3, 3, -1, -9, -5, 11, 23, -1, -45, -45, 47, 135, 43, -229, -313, 143, 771, 483, -1057, -2025, 91, 4139, 3959, -4321, -12237, -3597, 20879, 28071, -13685, -69829, -42457, 97199, 182115, -12285, -376513, -351945, 401083, 1104971, 302807, -1907137, -2512749, 1301523, 6327023
Offset: 0

Views

Author

N. J. A. Sloane, Nov 17 2002

Keywords

Programs

  • GAP
    a:=[1,-1,-1];; for n in [4..40] do a[n]:=-a[n-2]-2*a[n-3]; od; a; # G. C. Greubel, Nov 22 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 40); Coefficients(R!( (1-x)/((1+x)*(1-x+2*x^2)) )); // G. C. Greubel, Nov 22 2019
    
  • Maple
    seq(coeff(series((1-x)/((1+x)*(1-x+2*x^2)), x, n+1), x, n), n = 0..40); # G. C. Greubel, Nov 22 2019
  • Mathematica
    LinearRecurrence[{0,-1,-2}, {1,-1,-1}, 40] (* G. C. Greubel, Nov 22 2019 *)
    CoefficientList[Series[(1-x)/(1+x^2+2x^3),{x,0,60}],x] (* Harvey P. Dale, Mar 31 2023 *)
  • PARI
    Vec((1-x)/((1+x)*(1-x+2*x^2)) + O(x^40)) \\ Colin Barker, May 18 2019
    
  • Sage
    def A078033_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( (1-x)/((1+x)*(1-x+2*x^2)) ).list()
    A078033_list(40) # G. C. Greubel, Nov 22 2019
    

Formula

2*((-1)^n)*a(n) + A001607(n+2) = 1 - Creighton Dement, Oct 30 2004
a(n) = -a(n-2) - 2*a(n-3) for n>2. - Colin Barker, May 18 2019

A105576 a(n) = 2*a(n-1) - 3*a(n-2) + 2*a(n-3) with a(0) = 3, a(1) = 4, a(2) = 0.

Original entry on oeis.org

3, 4, 0, -6, -4, 10, 20, 2, -36, -38, 36, 114, 44, -182, -268, 98, 636, 442, -828, -1710, -52, 3370, 3476, -3262, -10212, -3686, 16740, 24114, -9364, -57590, -38860, 76322, 154044, 1402, -306684, -309486, 303884, 922858, 315092, -1530622, -2160804, 900442, 5222052, 3421170
Offset: 0

Views

Author

Creighton Dement, Apr 14 2005

Keywords

Comments

Floretion Algebra Multiplication Program, FAMP Code: 1vesseq[.5'j + .5'k + .5j' + .5k' + .5'ii' + .5e]

Crossrefs

Equals 2*A107920(n) + A107920(n-1) + 1.

Programs

  • Mathematica
    LinearRecurrence[{2,-3,2},{3,4,0},50] (* Harvey P. Dale, Jul 05 2022 *)

Formula

2*a(n) = A105225(n) + A105577(n) + 4*((-1)^n)*A001607(n+1)
G.f.: (3-2x+x^2)/((1-x)(1-x+2x^2)). a(n)=1+A107920(n)+2*A107920(n+1). [From R. J. Mathar, Feb 04 2009]

A386489 Expansion of (1-x)/((1+x+2*x^2)*(1-4*x+x^2)).

Original entry on oeis.org

1, 2, 7, 30, 109, 402, 1511, 5638, 21021, 78474, 292887, 1093006, 4079181, 15223810, 56815879, 212039702, 791343293, 2953333114, 11021988791, 41134623134, 153516503405, 572931388658, 2138209053735, 7979904827430, 29781410249821, 111145736175722
Offset: 0

Views

Author

Greg Dresden and Madison Lingchen Zhou, Aug 20 2025

Keywords

Comments

a(n) is the number of ways to tile a 2 X n board with squares, dominoes, and L-shaped quadrominoes. Here is one of the a(4)=109 possible tilings of a 2 X 4 board:
| | |||
Compare to A030186 which counts the tilings with just squares and dominos.

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{3, 1, 7, -2}, {1, 2, 7, 30}, 30]

Formula

a(n) = 3*a(n-1) + a(n-2) + 7*a(n-3) - 2*a(n-4).
a(n) = A030186(n) + 2*sum_{i=0..n-2}(A033505(n-i-3)*a(i) + A030186(n-i-3)*(a(i)+2*sum_{j=0..i} a(j)).
a(n) ~ (2 + sqrt(3))^(n+2) / (18 + 4*sqrt(3)). - Vaclav Kotesovec, Aug 21 2025
23*a(n) = -4*A001353(n)+13*A001353(n+1) +10*A001607(n+1)+8*A001607(n) . - R. J. Mathar, Aug 26 2025
Previous Showing 11-20 of 20 results.