cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 76 results. Next

A157728 a(n) = Fibonacci(n) - 4.

Original entry on oeis.org

1, 4, 9, 17, 30, 51, 85, 140, 229, 373, 606, 983, 1593, 2580, 4177, 6761, 10942, 17707, 28653, 46364, 75021, 121389, 196414, 317807, 514225, 832036, 1346265, 2178305, 3524574, 5702883, 9227461, 14930348, 24157813, 39088165, 63245982, 102334151
Offset: 5

Views

Author

N. J. A. Sloane, Jun 26 2010

Keywords

Comments

Partial sums of A071679. - R. J. Mathar, Oct 12 2010

Crossrefs

Programs

Formula

From R. J. Mathar, Oct 12 2010: (Start)
a(n) = 2*a(n-1) - a(n-3).
G.f.: x^5*(1+x)^2/((x-1)*(x^2+x-1)). (End)

A157729 a(n) = Fibonacci(n) + 5.

Original entry on oeis.org

5, 6, 6, 7, 8, 10, 13, 18, 26, 39, 60, 94, 149, 238, 382, 615, 992, 1602, 2589, 4186, 6770, 10951, 17716, 28662, 46373, 75030, 121398, 196423, 317816, 514234, 832045, 1346274, 2178314, 3524583, 5702892, 9227470, 14930357, 24157822, 39088174, 63245991, 102334160
Offset: 0

Views

Author

N. J. A. Sloane, Jun 26 2010

Keywords

Crossrefs

Programs

  • Haskell
    a157729 = (+ 5) . a000045
    a157729_list = 5 : 6 : map (subtract 5)
                           (zipWith (+) a157729_list $ tail a157729_list)
    -- Reinhard Zumkeller, Jul 30 2013
  • Magma
    [ Fibonacci(n) + 5: n in [0..40] ]; // Vincenzo Librandi, Apr 24 2011
    
  • Mathematica
    Fibonacci[Range[0,40]]+5 (* or *) LinearRecurrence[{2,0,-1},{5,6,6},50] (* Harvey P. Dale, Aug 17 2012 *)
  • PARI
    a(n)=fibonacci(n)+5 \\ Charles R Greathouse IV, Jul 02 2013
    

Formula

G.f.: ( 5-4*x-6*x^2 ) / ( (x-1)*(x^2+x-1) ). - R. J. Mathar, Aug 09 2012
a(0)=5, a(1)=6, a(2)=6, a(n)=2*a(n-1)+0*a(n-2)-a(n-3). - Harvey P. Dale, Aug 17 2012
a(0) = 5, a(1) = 6, a(n) = a(n - 2) + a(n - 1) - 5. - Reinhard Zumkeller, Jul 30 2013

A207717 T(n,k)=Number of nXk 0..1 arrays avoiding 0 0 0 and 0 0 1 horizontally and 0 0 1 and 1 0 0 vertically.

Original entry on oeis.org

2, 4, 4, 6, 16, 6, 10, 36, 36, 9, 16, 100, 114, 81, 14, 26, 256, 450, 387, 196, 22, 42, 676, 1644, 2205, 1414, 484, 35, 68, 1764, 6186, 12015, 11970, 5302, 1225, 56, 110, 4624, 23010, 66339, 97580, 66946, 20265, 3136, 90, 178, 12100, 85992, 364869, 805154
Offset: 1

Views

Author

R. H. Hardin Feb 19 2012

Keywords

Comments

Table starts
..2....4.....6......10.......16.........26..........42............68
..4...16....36.....100......256........676........1764..........4624
..6...36...114.....450.....1644.......6186.......23010.........85992
..9...81...387....2205....12015......66339......364869.......2009223
.14..196..1414...11970....97580.....805154.....6614706......54438356
.22..484..5302...66946...820820...10150118...125165018....1545006848
.35.1225.20265..383845..7070805..131365535..2433018665...45118588165
.56.3136.78120.2221688.61530000.1717508184.47808913432.1332236625328

Examples

			Some solutions for n=4 k=3
..1..1..1....1..1..1....1..0..1....0..1..0....1..0..0....1..0..1....1..0..1
..1..1..1....0..1..1....1..1..1....0..1..1....0..1..1....0..1..1....0..1..0
..1..1..1....1..1..1....0..1..0....0..1..1....1..1..0....1..0..0....1..1..1
..1..1..0....0..1..1....1..0..1....0..1..0....1..1..1....1..1..1....1..1..1
		

Crossrefs

Column 1 is A001611(n+2)
Column 2 is A207436
Row 1 is A006355(n+2)
Row 2 is A206981

A240783 T(n,k)=Number of nXk 0..1 arrays with no element equal to fewer vertical neighbors than horizontal neighbors, with new values 0..1 introduced in row major order.

Original entry on oeis.org

1, 1, 2, 1, 3, 4, 1, 4, 11, 8, 1, 6, 20, 34, 16, 1, 9, 46, 97, 111, 32, 1, 14, 97, 305, 459, 361, 64, 1, 22, 216, 959, 2167, 2187, 1172, 128, 1, 35, 472, 3033, 10150, 15332, 10442, 3809, 256, 1, 56, 1043, 9581, 47920, 106411, 108509, 49861, 12377, 512, 1, 90, 2296, 30354
Offset: 1

Views

Author

R. H. Hardin, Apr 12 2014

Keywords

Comments

Table starts
...1.....1.......1........1..........1...........1.............1..............1
...2.....3.......4........6..........9..........14............22.............35
...4....11......20.......46.........97.........216...........472...........1043
...8....34......97......305........959........3033..........9581..........30354
..16...111.....459.....2167......10150.......47920........226532........1071982
..32...361....2187....15332.....106411......746346.......5228820.......36701371
..64..1172...10442...108509....1120383....11677893.....121621207.....1269199948
.128..3809...49861...767834...11791412...182610635....2827515311....43857418181
.256.12377..238068..5434887..124095989..2856212777...65742420202..1515928067679
.512.40218.1136678.38467875.1306056075.44672652785.1528546759636.52397680462958

Examples

			Some solutions for n=4 k=4
..0..1..0..1....0..1..0..1....0..1..0..1....0..1..1..0....0..1..1..0
..1..0..1..0....0..0..1..0....0..1..1..0....1..1..1..0....0..1..1..1
..0..0..1..0....1..0..1..1....1..1..1..0....1..1..1..0....1..0..1..1
..0..1..0..1....1..0..1..1....1..1..0..1....0..1..0..1....1..0..1..1
		

Crossrefs

Column 1 is A000079(n-1)
Column 2 is A180762
Row 2 is A001611(n+1)

Formula

Empirical for column k:
k=1: a(n) = 2*a(n-1)
k=2: a(n) = 3*a(n-1) +a(n-2) -2*a(n-4)
k=3: a(n) = 5*a(n-1) -a(n-2) -a(n-3) +4*a(n-4) -4*a(n-5) -3*a(n-6) +a(n-7)
k=4: [order 22]
k=5: [order 54]
Empirical for row n:
n=1: a(n) = a(n-1)
n=2: a(n) = 2*a(n-1) -a(n-3)
n=3: a(n) = 2*a(n-1) +a(n-2) -a(n-3) -a(n-5)
n=4: [order 15]
n=5: [order 30] for n>34
n=6: [order 94]

A302515 T(n,k)=Number of nXk 0..1 arrays with every element equal to 0, 1, 4 or 5 horizontally, diagonally or antidiagonally adjacent elements, with upper left element zero.

Original entry on oeis.org

1, 2, 2, 3, 3, 4, 5, 3, 4, 8, 8, 5, 11, 6, 16, 13, 7, 15, 9, 9, 32, 21, 13, 21, 28, 14, 14, 64, 34, 23, 52, 36, 48, 21, 22, 128, 55, 37, 118, 80, 90, 89, 28, 35, 256, 89, 63, 220, 235, 199, 184, 163, 37, 56, 512, 144, 109, 408, 541, 689, 458, 376, 297, 51, 90, 1024, 233, 183
Offset: 1

Views

Author

R. H. Hardin, Apr 09 2018

Keywords

Comments

Table starts
...1..2..3...5....8...13....21.....34......55......89......144.......233
...2..3..3...5....7...13....23.....37......63.....109......183.......309
...4..4.11..15...21...52...118....220.....408.....852.....1764......3460
...8..6..9..28...36...80...235....541....1115....2554.....6095.....13920
..16..9.14..48...90..199...689...2125....5410...13908....39850....114503
..32.14.21..89..184..458..1784...7182...22544...67096...220654....775150
..64.22.28.163..376.1088..4558..23944...95681..344525..1302832...5550086
.128.35.37.297..832.2651.12324..82857..414880.1775176..7735877..39371229
.256.56.51.544.1744.6257.32336.282857.1748514.8778929.44362463.272701915

Examples

			Some solutions for n=5 k=4
..0..0..1..0. .0..1..0..1. .0..1..1..1. .0..1..0..1. .0..1..0..1
..1..1..1..0. .0..1..0..1. .0..1..0..1. .0..1..1..1. .0..1..0..1
..1..0..1..0. .0..0..1..1. .0..1..0..1. .0..0..0..1. .0..1..0..1
..1..0..1..0. .1..1..0..0. .0..1..0..1. .0..1..0..1. .0..1..0..1
..1..0..0..0. .1..0..1..0. .0..0..0..1. .0..1..0..1. .0..1..0..1
		

Crossrefs

Column 1 is A000079(n-1).
Column 2 is A001611(n+1).
Row 1 is A000045(n+1).
Row 2 is A003227(n-1) for n>2.

Formula

Empirical for column k:
k=1: a(n) = 2*a(n-1)
k=2: a(n) = 2*a(n-1) -a(n-3)
k=3: a(n) = a(n-1) +a(n-4) for n>7
k=4: a(n) = a(n-1) +2*a(n-3) +2*a(n-4) -a(n-6) -a(n-7) for n>10
k=5: a(n) = a(n-1) +6*a(n-3) +2*a(n-5) -12*a(n-6) -4*a(n-7) +8*a(n-9) for n>11
k=6: a(n) = a(n-1) +6*a(n-3) +5*a(n-4) +3*a(n-5) -8*a(n-6) -6*a(n-7) -3*a(n-8) for n>12
k=7: [order 15] for n>21
Empirical for row n:
n=1: a(n) = a(n-1) +a(n-2)
n=2: a(n) = a(n-1) +2*a(n-3) for n>5
n=3: a(n) = a(n-1) +2*a(n-3) +4*a(n-4) for n>7
n=4: a(n) = a(n-1) +a(n-2) +3*a(n-3) +5*a(n-4) -a(n-5) -5*a(n-6) -4*a(n-7) for n>10
n=5: [order 13] for n>17
n=6: [order 23] for n>29
n=7: [order 50] for n>55

A302680 T(n,k)=Number of nXk 0..1 arrays with every element equal to 0, 1, 4 or 6 horizontally, diagonally or antidiagonally adjacent elements, with upper left element zero.

Original entry on oeis.org

1, 2, 2, 3, 3, 4, 5, 3, 4, 8, 8, 5, 8, 6, 16, 13, 7, 12, 7, 9, 32, 21, 13, 18, 20, 11, 14, 64, 34, 23, 40, 30, 33, 18, 22, 128, 55, 37, 94, 76, 63, 64, 29, 35, 256, 89, 63, 184, 217, 187, 125, 121, 47, 56, 512, 144, 109, 358, 509, 661, 453, 257, 231, 76, 90, 1024, 233, 183, 760
Offset: 1

Views

Author

R. H. Hardin, Apr 11 2018

Keywords

Comments

Table starts
...1..2..3...5....8...13....21.....34......55.......89......144.......233
...2..3..3...5....7...13....23.....37......63......109......183.......309
...4..4..8..12...18...40....94....184.....358......760.....1594......3220
...8..6..7..20...30...76...217....509....1189.....3034.....7569.....18274
..16..9.11..33...63..187...661...1837....5075....15661....46975....135191
..32.14.18..64..125..453..2013...6725...21745....80985...295335...1015113
..64.22.29.121..257.1125..6311..25139...96728...439233..1942666...8017639
.128.35.47.231..528.2782.19497..92889..422915..2330640.12480973..61679118
.256.56.76.440.1085.6843.60253.343421.1847358.12346637.80210343.474618407

Examples

			Some solutions for n=5 k=4
..0..1..1..1. .0..1..0..1. .0..0..0..1. .0..1..1..1. .0..0..0..1
..0..1..0..1. .0..1..0..1. .0..1..0..1. .0..1..0..1. .0..1..0..1
..0..1..0..1. .0..0..1..1. .0..1..1..1. .0..1..0..1. .0..1..0..1
..0..1..0..1. .1..1..0..0. .0..1..0..1. .0..1..0..1. .0..1..0..1
..0..0..0..1. .1..0..1..0. .0..1..0..1. .0..1..0..1. .0..1..0..1
		

Crossrefs

Column 1 is A000079(n-1).
Column 2 is A001611(n+1).
Row 1 is A000045(n+1).
Row 2 is A003229(n-1) for n>2.

Formula

Empirical for column k:
k=1: a(n) = 2*a(n-1)
k=2: a(n) = 2*a(n-1) -a(n-3)
k=3: a(n) = a(n-1) +a(n-2) for n>5
k=4: a(n) = a(n-1) +2*a(n-2) -a(n-4) for n>8
k=5: a(n) = a(n-1) +3*a(n-3) +2*a(n-4) +2*a(n-5) for n>10
k=6: a(n) = a(n-1) +2*a(n-2) +4*a(n-3) +a(n-4) -2*a(n-5) -a(n-6) for n>12
k=7: [order 12] for n>19
Empirical for row n:
n=1: a(n) = a(n-1) +a(n-2)
n=2: a(n) = a(n-1) +2*a(n-3) for n>5
n=3: a(n) = a(n-1) +3*a(n-3) +3*a(n-4) for n>7
n=4: a(n) = a(n-1) +a(n-2) +5*a(n-3) +5*a(n-4) -3*a(n-5) -3*a(n-6) +2*a(n-7) for n>11
n=5: [order 11] for n>16
n=6: [order 17] for n>23
n=7: [order 31] for n>38

A303314 T(n,k)=Number of nXk 0..1 arrays with every element equal to 0, 1, 4, 5 or 6 horizontally, diagonally or antidiagonally adjacent elements, with upper left element zero.

Original entry on oeis.org

1, 2, 2, 3, 3, 4, 5, 3, 4, 8, 8, 5, 12, 6, 16, 13, 7, 17, 11, 9, 32, 21, 13, 24, 36, 19, 14, 64, 34, 23, 67, 50, 74, 34, 22, 128, 55, 37, 158, 128, 139, 165, 53, 35, 256, 89, 63, 298, 439, 410, 349, 361, 83, 56, 512, 144, 109, 595, 1085, 1799, 1221, 853, 783, 136, 90, 1024, 233
Offset: 1

Views

Author

R. H. Hardin, Apr 21 2018

Keywords

Comments

Table starts
...1..2...3....5....8....13.....21......34.......55........89........144
...2..3...3....5....7....13.....23......37.......63.......109........183
...4..4..12...17...24....67....158.....298......595......1337.......2863
...8..6..11...36...50...128....439....1085.....2431......6452......17455
..16..9..19...74..139...410...1799....5907....16494.....53290.....184915
..32.14..34..165..349..1221...7096...30280...102683....403872....1783894
..64.22..53..361..853..3453..26184..148313...618149...2955145...16591424
.128.35..83..783.2180.10223.100128..746323..3851318..22515378..159560449
.256.56.136.1710.5525.30247.387892.3784002.23967605.171306353.1539204838

Examples

			Some solutions for n=5 k=4
..0..1..0..0. .0..1..1..1. .0..0..0..1. .0..1..0..0. .0..1..0..1
..0..1..1..1. .0..1..0..1. .0..1..0..1. .0..1..1..1. .0..1..1..1
..0..1..0..1. .0..1..0..1. .0..1..0..1. .0..1..0..1. .0..1..0..1
..0..1..0..1. .0..1..0..1. .0..0..0..1. .0..1..0..1. .0..1..0..1
..0..0..0..1. .0..0..0..1. .1..1..0..1. .0..1..0..1. .0..1..0..1
		

Crossrefs

Column 1 is A000079(n-1).
Column 2 is A001611(n+1).
Row 1 is A000045(n+1).
Row 2 is A003229(n-1) for n>2.

Formula

Empirical for column k:
k=1: a(n) = 2*a(n-1)
k=2: a(n) = 2*a(n-1) -a(n-3)
k=3: a(n) = a(n-1) +a(n-3) +a(n-4) for n>7
k=4: a(n) = a(n-1) +a(n-2) +3*a(n-3) +2*a(n-4) -a(n-5) -2*a(n-6) -a(n-7) for n>10
k=5: a(n) = a(n-1) +9*a(n-3) +2*a(n-4) +4*a(n-5) -10*a(n-6) -6*a(n-7) +4*a(n-9) for n>12
k=6: [order 8] for n>11
k=7: [order 20] for n>23
Empirical for row n:
n=1: a(n) = a(n-1) +a(n-2)
n=2: a(n) = a(n-1) +2*a(n-3) for n>5
n=3: a(n) = a(n-1) +3*a(n-3) +4*a(n-4) for n>7
n=4: a(n) = a(n-1) +a(n-2) +5*a(n-3) +9*a(n-4) -3*a(n-5) -7*a(n-6) -2*a(n-7) for n>11
n=5: [order 12] for n>16
n=6: [order 23] for n>28
n=7: [order 46] for n>51

A207488 T(n,k)=Number of nXk 0..1 arrays avoiding 0 0 0 and 0 1 1 horizontally and 0 1 1 and 1 1 0 vertically.

Original entry on oeis.org

2, 4, 4, 6, 16, 6, 9, 36, 36, 9, 13, 81, 82, 81, 14, 18, 169, 217, 177, 196, 22, 25, 324, 499, 530, 408, 484, 35, 34, 625, 1014, 1322, 1459, 942, 1225, 56, 46, 1156, 2141, 2749, 4041, 3947, 2233, 3136, 90, 62, 2116, 4188, 6217, 8808, 12151, 11306, 5348, 8100, 145, 83
Offset: 1

Views

Author

R. H. Hardin Feb 18 2012

Keywords

Comments

Table starts
..2....4....6.....9.....13.....18.....25......34......46.......62.......83
..4...16...36....81....169....324....625....1156....2116.....3844.....6889
..6...36...82...217....499...1014...2141....4188....8150....15670....29517
..9...81..177...530...1322...2749...6217...12712...25908....52474...103704
.14..196..408..1459...4041...8808..21991...48044..105558...230156...490287
.22..484..942..3947..12151..26980..73325..170276..397692...935992..2150515
.35.1225.2233.11306..39050..89417.268275..667760.1691526..4324858.10910668
.56.3136.5348.32445.126411.292136.959855.2555724.6929562.19404152.53733153

Examples

			Some solutions for n=4 k=3
..1..1..1....0..1..0....0..0..1....1..0..1....0..1..0....0..0..1....0..1..0
..1..1..1....0..0..1....0..0..1....1..0..1....1..1..0....0..1..0....0..0..1
..1..1..1....1..1..0....1..0..1....1..0..1....0..1..0....0..0..1....1..0..0
..1..1..1....0..0..1....0..0..1....1..0..1....1..1..1....0..1..0....0..0..1
		

Crossrefs

Column 1 is A001611(n+2)
Column 2 is A207436
Row 1 is A171861(n+1)
Row 2 is A207025
Row 3 is A207270

A207500 T(n,k)=Number of nXk 0..1 arrays avoiding 0 0 0 and 0 1 1 horizontally and 0 0 1 and 1 0 0 vertically.

Original entry on oeis.org

2, 4, 4, 6, 16, 6, 9, 36, 36, 9, 13, 81, 102, 81, 14, 18, 169, 283, 297, 196, 22, 25, 324, 699, 1004, 932, 484, 35, 34, 625, 1526, 2942, 3939, 2974, 1225, 56, 46, 1156, 3355, 7305, 14253, 15495, 9723, 3136, 90, 62, 2116, 6888, 17911, 41938, 68745, 62530, 32164
Offset: 1

Views

Author

R. H. Hardin Feb 18 2012

Keywords

Comments

Table starts
..2....4.....6......9......13......18.......25........34........46.........62
..4...16....36.....81.....169.....324......625......1156......2116.......3844
..6...36...102....283.....699....1526.....3355......6888.....13954......27816
..9...81...297...1004....2942....7305....17911.....40262.....87990.....187012
.14..196...932...3939...14253...41938...122061....319798....813724....2009628
.22..484..2974..15495...68745..237576...804887...2408502...6896518...18962878
.35.1225..9723..62530..343310.1413961..5715255..20090516..67370124..216796950
.56.3136.32164.253747.1714707.8384076.40046975.163471950.628620128.2300337450

Examples

			Some solutions for n=4 k=3
..1..0..0....1..0..0....1..1..1....0..1..0....0..1..0....0..1..0....0..0..1
..0..0..1....1..0..1....1..1..1....0..1..0....0..0..1....1..1..0....1..1..1
..1..0..0....1..0..0....1..1..1....0..1..0....0..1..0....1..1..0....0..0..1
..1..0..1....0..0..1....1..1..1....0..1..0....0..0..1....1..0..0....1..1..0
		

Crossrefs

Column 1 is A001611(n+2)
Column 2 is A207436
Row 1 is A171861(n+1)
Row 2 is A207025
Row 3 is A207243

A207564 T(n,k)=Number of nXk 0..1 arrays avoiding 0 0 1 and 0 1 0 horizontally and 0 1 1 and 1 1 0 vertically.

Original entry on oeis.org

2, 4, 4, 6, 16, 6, 9, 36, 36, 9, 14, 81, 92, 81, 14, 21, 196, 241, 221, 196, 22, 31, 441, 720, 636, 618, 484, 35, 46, 961, 1889, 2234, 2135, 1690, 1225, 56, 68, 2116, 4719, 6315, 9568, 6709, 4861, 3136, 90, 100, 4624, 12102, 16812, 32823, 36426, 23276, 13900
Offset: 1

Views

Author

R. H. Hardin Feb 18 2012

Keywords

Comments

Table starts
..2....4.....6.....9.....14......21.......31........46........68........100
..4...16....36....81....196.....441......961......2116......4624......10000
..6...36....92...241....720....1889.....4719.....12102.....30414......74588
..9...81...221...636...2234....6315....16812.....47596....129150.....337186
.14..196...618..2135...9568...32823...106833....378104...1270366....4115246
.22..484..1690..6709..36426..138017...493471...1980774...7259428...25276248
.35.1225..4861.23276.160652..738515..3275898..16648464..77299468..346860730
.56.3136.13900.78733.666212.3451393.17232331.100565794.513390118.2498101416

Examples

			Some solutions for n=4 k=3
..1..0..1....1..0..1....1..1..0....1..0..0....0..1..1....1..1..1....0..0..0
..1..0..1....0..1..1....0..0..0....0..0..0....1..1..1....1..1..1....1..1..1
..1..0..1....1..0..1....1..0..1....1..0..1....0..1..1....1..1..1....0..0..0
..1..1..1....0..1..1....0..0..0....0..0..0....1..1..1....1..1..1....0..0..0
		

Crossrefs

Column 1 is A001611(n+2)
Column 2 is A207436
Row 1 is A038718(n+2)
Row 2 is A207069
Row 3 is A207414
Previous Showing 21-30 of 76 results. Next