cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 326 results. Next

A308443 Expansion of e.g.f. Product_{k>=1} 1/(1 - x^k)^(psi(k)/k), where psi() is the Dedekind psi function (A001615).

Original entry on oeis.org

1, 1, 5, 23, 173, 1249, 13249, 130255, 1670297, 21350177, 322709021, 4933457671, 87302545285, 1551234590593, 30934738239833, 630934308253439, 14035903893341489, 320008164205036225, 7885477719156600757, 198735099970790861047, 5352424525748204265821
Offset: 0

Views

Author

Ilya Gutkovskiy, May 27 2019

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 20; CoefficientList[Series[Product[1/(1 - x^k)^(DirichletConvolve[j, MoebiusMu[j]^2, j, k]/k), {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]!
    a[n_] := a[n] = Sum[Sum[2^PrimeNu[d]/d, {d, Divisors[k]}] k! Binomial[n - 1, k - 1] a[n - k], {k, 1, n}]; a[0] = 1; Table[a[n], {n, 0, 20}]

Formula

E.g.f.: exp(Sum_{k>=1} A060648(k)*x^k/k).

A330006 Numbers m such that psi(m) > psi(k) for all k < m, where psi is the Dedekind psi function (A001615).

Original entry on oeis.org

1, 2, 3, 4, 6, 10, 12, 18, 24, 30, 42, 54, 60, 78, 84, 90, 114, 120, 150, 168, 180, 210, 270, 294, 300, 330, 390, 420, 510, 546, 570, 630, 750, 780, 840, 990, 1050, 1170, 1260, 1470, 1650, 1680, 1890, 2100, 2310, 2730, 3150, 3360, 3570, 3990, 4290, 4620, 5250
Offset: 1

Views

Author

Amiram Eldar, Nov 26 2019

Keywords

Examples

			The first 6 values of the psi function are 1, 3, 4, 6, 6, 12. The record values, 1, 3, 4, 6, 12 are at positions 1, 2, 3, 4, 6.
		

Crossrefs

Cf. A001615, A210523 (record values).

Programs

  • Mathematica
    psi[1] = 1; psi[n_] := n * Times @@ (1 + 1/FactorInteger[n][[;; , 1]]); seq = {}; pmax = 0; Do[p = psi[n]; If[p > pmax, pmax = p; AppendTo[seq, n]], {n, 1, 10^5}]; seq

Formula

A001615(a(n)) = A210523(n).

A333910 Numbers k such that psi(k) is the sum of 2 squares, where psi is the Dedekind psi function (A001615).

Original entry on oeis.org

1, 3, 7, 10, 17, 18, 19, 20, 21, 22, 27, 30, 31, 36, 40, 44, 45, 46, 50, 51, 55, 57, 58, 60, 66, 67, 70, 71, 72, 73, 79, 80, 88, 89, 92, 93, 94, 97, 99, 100, 103, 106, 115, 116, 118, 119, 120, 126, 127, 132, 133, 138, 140, 144, 145, 150, 154, 160, 162, 163, 165
Offset: 1

Views

Author

Amiram Eldar, Apr 09 2020

Keywords

Examples

			1 is a term since psi(1) = 1 = 0^2 + 1^2.
		

Crossrefs

Programs

  • Mathematica
    psi[1] = 1; psi[n_] := n * Times @@ (1 + 1/Transpose[FactorInteger[n]][[1]]); Select[Range[200], SquaresR[2, psi[#]] > 0 &]
  • Python
    from itertools import count, islice
    from collections import Counter
    from sympy import factorint
    def A333910_gen(): # generator of terms
        return filter(lambda n:all(p & 3 != 3 or e & 1 == 0 for p, e in sum((Counter(factorint(1+p))+Counter({p:e-1}) for p ,e in factorint(n).items()),start=Counter()).items()),count(1))
    A333910_list = list(islice(A333910_gen(),30)) # Chai Wah Wu, Jun 27 2022

Formula

c1 * x/log(x)^(3/2) < N(x) < c2 * x/log(x)^(3/2), where N(x) is the number of terms <= x, and c1 and c2 are two positive constants (Banks et al., 2005).

A342917 a(n) = A001615(n) / gcd(1+n, A001615(n)), where A001615 is Dedekind psi, n * Product_{p|n, p prime} (1 + 1/p).

Original entry on oeis.org

1, 1, 1, 6, 1, 12, 1, 4, 6, 18, 1, 24, 1, 8, 3, 24, 1, 36, 1, 12, 16, 36, 1, 48, 15, 14, 9, 48, 1, 72, 1, 16, 24, 54, 4, 72, 1, 20, 7, 72, 1, 96, 1, 8, 36, 72, 1, 96, 28, 30, 18, 84, 1, 108, 9, 32, 40, 90, 1, 144, 1, 32, 3, 96, 14, 144, 1, 36, 48, 144, 1, 144, 1, 38, 30, 120, 16, 168, 1, 16, 54, 126, 1, 192, 54, 44, 15, 144
Offset: 1

Views

Author

Antti Karttunen, Mar 29 2021

Keywords

Comments

The scatter plot shows two distinct "fans" separated by a gap. Why?

Crossrefs

Cf. also A160595.

Programs

  • PARI
    A001615(n) = if(1==n,n, my(f=factor(n)); prod(i=1, #f~, f[i, 1]^f[i, 2] + f[i, 1]^(f[i, 2]-1))); \\ After code in A001615
    A342917(n) = { my(u=A001615(n)); (u/gcd(1+n,u)); };

Formula

a(n) = A001615(n) / A342915(n) = A001615(n) / gcd(1+n, A001615(n)).

A344703 Numbers k for which sigma(k^2) and psi(k^2) share a factor, where sigma is the sum of divisors, A000203, and psi is the Dedekind psi function, A001615.

Original entry on oeis.org

14, 21, 26, 28, 35, 38, 39, 42, 52, 56, 57, 62, 63, 65, 70, 74, 76, 77, 78, 82, 84, 86, 93, 95, 98, 99, 104, 105, 111, 112, 114, 117, 119, 122, 124, 126, 129, 130, 133, 134, 140, 143, 146, 148, 152, 154, 155, 156, 158, 161, 166, 168, 171, 172, 175, 182, 183, 185, 186, 189, 190, 194, 195, 198, 201, 203, 206, 208, 209
Offset: 1

Views

Author

Antti Karttunen and Peter Munn, May 27 2021

Keywords

Comments

Numbers k for which A344695(k^2) > 1.
It can be shown that sigma(m) and psi(m) share a factor if m is nonsquare. (See A344695 for more detail.) So here we consider only square numbers, m = k^2.
For prime p, sigma(p^2) and psi(p^2) are coprime, since sigma(p^2) = p^2 + p + 1 = psi(p^2) + 1. So all terms are composite. We can say more, since for prime p and positive integer e, psi(p^(2*e)) = p^(2*e-1) * (p+1), whereas sigma(p^(2*e)) can be shown to be congruent to 1 modulo p and to 1 modulo p+1, so shares no factors with p^(2*e-1) * (p+1). So all terms are divisible by more than one prime.
If k is in the sequence, m*k is also present for any positive integer m coprime to k.

Examples

			Sigma (A000203) and the Dedekind psi function (A001615) are both multiplicative, so we gain insight by showing the values of these functions using their multiplicative properties:-
sigma(14^2) = sigma(2^2) * sigma(7^2) = 7 * 57 = 7 * (3*19).
psi(14^2) = psi(2^2) * psi(7^2) = 6 * 56 = (2*3) * (2^3*7).
So sigma(14^2) and psi(14^2) share factors 3 and 7, so 14 is in the sequence.
Looking in particular at the shared factor 3, we see it is present in sigma(7^2) and psi(2^2). For prime p, sigma(p^2) and psi(p^2) equate to polynomials in p, so we deduce 3 divides sigma(p^2) for p congruent to 7 modulo 3, and divides psi(p^2) for p congruent to 2 modulo 3. From this we see all products of a prime of the form 3m+1 and a prime of the form 3m+2 are in the sequence; for instance (3*4+1) * (3*1+2) = 13 * 5 = 65.
		

Crossrefs

Subsequences: A344872.

Programs

  • Maple
    filter:= proc(k) local n,F, sig, psi, t;
       n:= k^2;
       F:= map(t -> [t[1],2*t[2]], ifactors(k)[2]);
       sig:= mul((t[1]^(1+t[2])-1)/(t[1]-1),t=F);
       psi:= n*mul(1+1/t[1],t=F);
       igcd(sig,psi) > 1
    end proc:
    select(filter, [$1..300]); # Robert Israel, Jan 06 2024
  • Mathematica
    filter[k_] := Module[{n, F, sig, psi},
       n = k^2;
       F = {#[[1]], 2 #[[2]]}& /@ FactorInteger[k];
       sig = Product[(t[[1]]^(1 + t[[2]]) - 1)/(t[[1]] - 1), {t, F}];
       psi = n*Product[1 + 1/t[[1]], {t, F}];
       GCD[sig, psi] > 1];
    Select[Range[300], filter] // Quiet (* Jean-François Alcover, May 23 2024, after Robert Israel *)
  • PARI
    A001615(n) = if(1==n,n, my(f=factor(n)); prod(i=1, #f~, f[i, 1]^f[i, 2] + f[i, 1]^(f[i, 2]-1))); \\ After code in A001615
    A344695(n) = gcd(sigma(n), A001615(n));
    isA344703(n) = (A344695(n^2)>1);

A344704 a(n) = gcd(A001615(n)-n, sigma(n)-(A001615(n)+n)).

Original entry on oeis.org

1, 1, 1, 1, 1, 6, 1, 1, 1, 2, 1, 4, 1, 2, 3, 1, 1, 3, 1, 2, 1, 2, 1, 12, 1, 2, 1, 20, 1, 6, 1, 1, 3, 2, 1, 1, 1, 2, 1, 2, 1, 6, 1, 4, 3, 2, 1, 4, 1, 1, 3, 2, 1, 6, 1, 8, 1, 2, 1, 12, 1, 2, 11, 1, 1, 6, 1, 10, 3, 2, 1, 3, 1, 2, 1, 4, 1, 6, 1, 2, 1, 2, 1, 4, 1, 2, 3, 4, 1, 18, 7, 4, 1, 2, 5, 12, 1, 5, 3, 1, 1, 6, 1, 2, 3
Offset: 1

Views

Author

Antti Karttunen, May 28 2021

Keywords

Crossrefs

Programs

  • PARI
    A001615(n) = if(1==n,n, my(f=factor(n)); prod(i=1, #f~, f[i, 1]^f[i, 2] + f[i, 1]^(f[i, 2]-1))); \\ After code in A001615
    A344704(n) = gcd(A001615(n)-n, sigma(n)-(A001615(n)+n));

Formula

a(n) = gcd(A306927(n), n-A244963(n)) = gcd(A001615(n)-n, sigma(n)-(A001615(n)+n)).

A353868 Numbers k such that the Carmichael function A002322(k) divides Dedekind psi A001615(k).

Original entry on oeis.org

1, 2, 3, 4, 6, 8, 9, 12, 14, 15, 16, 18, 20, 24, 27, 28, 30, 32, 35, 36, 40, 42, 45, 48, 52, 54, 56, 60, 63, 64, 65, 70, 72, 75, 78, 80, 81, 84, 90, 96, 98, 100, 104, 105, 108, 112, 117, 119, 120, 126, 128, 130, 135, 140, 144, 150, 156, 160, 162, 168, 175, 180, 182, 189, 190, 192, 195, 196, 200, 204, 208, 210, 216
Offset: 1

Views

Author

Max Alekseyev, May 08 2022

Keywords

Comments

If coprime s,t are terms, then so is s*t. Also, if t is a term and prime p|t, then p*t is also a term. Squarefree terms are listed in A353869, primitive terms are listed in A353870, and their intersection forms A353871.

Crossrefs

Programs

  • Mathematica
    psi[1] = 1; psi[n_] := n * Times @@ (1 + 1/Transpose[FactorInteger[n]][[1]]); Select[Range[216], Divisible[psi[#], CarmichaelLambda[#]] &] (* Amiram Eldar, May 09 2022 *)

A353869 Squarefree numbers k such that the Carmichael function A002322(k) divides the Dedekind psi A001615(k).

Original entry on oeis.org

1, 2, 3, 6, 14, 15, 30, 35, 42, 65, 70, 78, 105, 119, 130, 182, 190, 195, 210, 238, 255, 357, 370, 377, 390, 418, 455, 510, 546, 570, 595, 663, 714, 754, 910, 969, 1045, 1110, 1118, 1131, 1190, 1254, 1326, 1330, 1365, 1547, 1558, 1615, 1785, 1885, 1887, 1938, 2090, 2190, 2261, 2262, 2470, 2590, 2639, 2730
Offset: 1

Views

Author

Max Alekseyev, May 08 2022

Keywords

Comments

If s,t are terms, then so is lcm(s,t); in particular, if s,t are coprime, then s*t is also a term. Primitive squarefree terms are listed in A353871.

Crossrefs

Intersection of A005117 and A353868.

Programs

  • Mathematica
    psi[1] = 1; psi[n_] := n * Times @@ (1 + 1/Transpose[FactorInteger[n]][[1]]); Select[Range[3000], SquareFreeQ[#] && Divisible[psi[#], CarmichaelLambda[#]] &] (* Amiram Eldar, May 09 2022 *)

A355045 a(n) is the least positive integer k which is a multiple of prime(n) such that for some m >= 0, psi(k) = rad(k)^m, where psi(k) = A001615(k) and rad(k) = A007947(k).

Original entry on oeis.org

18, 18, 11250, 57177414, 8696754, 10763393803185114, 501126, 23816977256250, 23981814018, 230750426250, 3730545397766934, 33914855378546706844968750, 11135545745963323734, 234030019748505421122, 246218836545018, 5018345916
Offset: 1

Views

Author

Vladislav Shubin, Jun 16 2022

Keywords

Crossrefs

Programs

  • Mathematica
    DedekindPsi[n_] :=
      n * Product[(1 + 1/i), {i, FactorInteger[n][[All, 1]]}];
    For[s = 2, s <= 49, s++,
       If[s == 1, Print["n   =   ", 18]; s = s + 1;];
       Q = 1*Prime[s];
    InitialArray = FactorInteger[If[Q != 3, 3*(Q + 1), 2]];
    For[i = 1, i <= Length[InitialArray] - 1, i++,
      CurrentArray =
       FactorInteger[InitialArray[[-i, 1]] + 1] ~Join~ InitialArray;
          InitialArray =
       FactorInteger[Product[CurrentArray[[k, 1]] ^ CurrentArray[[k, 2]], {k, 1,
          Length[CurrentArray]}]];
      ];
    InitialArray = InitialArray ~Join~ {{Q, 0}};
    m = Max[InitialArray[[All, 2]]];
    n = Product[Power[InitialArray[[k, 1]], m - InitialArray[[k, 2]] + 1], {k, 1,
        Length[InitialArray]}];
    If[Q ==  3, m = m + 1];
    Print["n   =   " n]];

A357820 Numerators of the partial alternating sums of the reciprocals of the Dedekind psi function (A001615).

Original entry on oeis.org

1, 2, 11, 3, 11, 5, 23, 7, 23, 65, 71, 17, 64, 491, 64, 491, 173, 505, 2651, 2581, 10639, 1151, 3593, 3523, 727, 237, 2189, 2147, 11071, 10931, 5623, 2759, 5623, 16589, 2113, 8347, 162373, 159979, 20318, 160549, 163969, 649891, 7292441, 7204661, 7292441, 7204661
Offset: 1

Views

Author

Amiram Eldar, Oct 14 2022

Keywords

Examples

			Fractions begin with 1, 2/3, 11/12, 3/4, 11/12, 5/6, 23/24, 7/8, 23/24, 65/72, 71/72, 17/18, ...
		

Crossrefs

Cf. A001615, A173290, A357821 (denominators).
Similar sequence: A211177.

Programs

  • Mathematica
    psi[n_] := n * Times @@ (1 + 1/Transpose[FactorInteger[n]][[1]]); psi[1] = 1; Numerator[Accumulate[1/Array[(-1)^(# + 1)*psi[#] &, 50]]]
  • PARI
    f(n) = n * sumdivmult(n, d, issquarefree(d)/d); \\ A001615
    a(n) = numerator(sum(k=1, n, (-1)^(k+1)/f(k))); \\ Michel Marcus, Oct 15 2022

Formula

a(n) = numerator(Sum_{k=1..n} (-1)^(k+1)/psi(k)).
a(n)/A357821(n) ~ (C/5) * (log(n) + gamma + D + 24*log(2)/5) + O(log(n)^(2/3) * log(log(n))^(4/3) / n), where C = Product_{p prime} (1 - 1/(p*(p+1))) (A065463), and D = Sum_{p prime} log(p)/(p^2+p-1) (A335707) (Bordellès and Cloitre, 2013; Tóth, 2017).
Previous Showing 41-50 of 326 results. Next