cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 1287 results. Next

A079381 Costé prime expansion of Euler's constant gamma (A001620).

Original entry on oeis.org

2, 7, 13, 19, 89, 23, 11, 131, 73, 43, 37, 7, 11, 3, 3, 3, 3, 3, 5, 2, 7, 61, 251, 41, 13, 11, 7, 23, 29, 5, 13, 11, 3, 67, 29, 7, 5, 5, 2, 17, 5, 23, 7, 11, 2, 31, 29, 5, 5, 5, 3, 3, 5, 11, 5, 7, 7, 29, 17, 5, 2, 41, 13, 13, 11, 199, 157, 101, 37, 7, 127, 29, 11, 3, 3, 5, 17, 5, 7, 5, 2, 5
Offset: 0

Views

Author

N. J. A. Sloane, Feb 16 2003

Keywords

Comments

For x in (0,1], define P(x) = min{p: p prime, 1/x < p}, Phi(x) = P(x)x - 1. Costé prime expansion of x(0) is sequence a(0), a(1), ... given by x(n) = Phi(x(n-1)) (n>0), a(n) = P(x(n)) (n >= 0).

Crossrefs

Programs

  • Maple
    Digits := 500: P := proc(x) local y; y := ceil(evalf(1/x)); if isprime(y) then y else nextprime(y); fi; end; F := proc(x) local y,i,t1; y := x; t1 := []; for i from 1 to 100 do p := P(y); t1 := [op(t1),p]; y := p*y-1; od; t1; end; F(gamma);
  • Mathematica
    $MaxExtraPrecision = 500; P[x_] := Module[{y}, y = Ceiling[1/x]; If[PrimeQ[y], y, NextPrime[y]]]; F[x_] := Module[{y, i, t1}, y = x; t1 = {}; For[i = 1, i <= 100, i++, AppendTo[t1, p = P[y]]; y = p*y - 1]; t1]; F[EulerGamma] (* G. C. Greubel, Jan 20 2019 *)

Extensions

More terms from Mark Hudson (mrmarkhudson(AT)hotmail.com), Feb 17 2003

A097668 Decimal expansion of the constant 5*exp(psi(2/5)+EulerGamma), where EulerGamma is the Euler-Mascheroni constant (A001620) and psi(x) is the digamma function.

Original entry on oeis.org

6, 8, 7, 4, 7, 4, 2, 0, 6, 9, 9, 0, 8, 0, 1, 9, 6, 0, 7, 0, 8, 1, 6, 4, 2, 2, 1, 3, 3, 3, 9, 8, 4, 7, 5, 4, 9, 9, 7, 7, 7, 3, 5, 3, 0, 7, 8, 3, 2, 0, 5, 9, 3, 2, 3, 7, 3, 2, 7, 7, 5, 7, 1, 6, 4, 9, 6, 1, 3, 3, 4, 7, 9, 6, 8, 5, 6, 6, 7, 4, 7, 1, 1, 0, 0, 0, 9, 9, 2, 6, 7, 4, 2, 8, 4, 8, 2, 0, 1, 6, 9, 7, 8, 0, 8
Offset: 0

Views

Author

Paul D. Hanna, Aug 25 2004

Keywords

Comments

This constant appears in Benoit Cloitre's generalized Euler-Gauss formula for the Gamma function (see Cloitre link) and is involved in the exact determination of asymptotic limits of certain order-5 linear recursions with varying coefficients (see A097680 for example).

Examples

			c = 0.68747420699080196070816422133398475499777353078320593237327...
		

References

  • A. M. Odlyzko, Linear recurrences with varying coefficients, in Handbook of Combinatorics, Vol. 2, R. L. Graham, M. Grotschel and L. Lovasz, eds., Elsevier, Amsterdam, 1995, pp. 1135-1138.

Crossrefs

Programs

  • Mathematica
    RealDigits[ GoldenRatio^(Sqrt[5]/2)/5^(1/4)*E^(-Pi/2Sqrt[1 - 2/Sqrt[5]]), 10, 105][[1]] (* Robert G. Wilson v, Aug 27 2004 *)
  • PARI
    5*exp(psi(2/5)+Euler)

Formula

c = ((sqrt(5)+1)/2)^(sqrt(5)/2)/5^(1/4)*exp(-Pi/2*sqrt(1-2/sqrt(5))).

Extensions

More terms from Robert G. Wilson v, Aug 27 2004

A097669 Decimal expansion of the constant 5*exp(psi(3/5)+EulerGamma), where EulerGamma is the Euler-Mascheroni constant (A001620) and psi(x) is the digamma function.

Original entry on oeis.org

1, 9, 0, 7, 9, 5, 9, 5, 3, 2, 5, 4, 3, 5, 4, 2, 5, 2, 2, 5, 5, 3, 3, 3, 8, 1, 3, 9, 7, 2, 9, 5, 2, 0, 3, 6, 9, 0, 8, 5, 1, 6, 0, 6, 8, 3, 5, 9, 0, 8, 2, 9, 6, 8, 2, 2, 8, 2, 2, 3, 5, 9, 6, 0, 8, 1, 0, 7, 0, 6, 3, 7, 8, 6, 8, 8, 6, 5, 5, 0, 4, 0, 3, 9, 9, 7, 2, 3, 6, 3, 5, 8, 3, 0, 9, 0, 1, 3, 8, 0, 7, 5, 3, 9, 0
Offset: 1

Views

Author

Paul D. Hanna, Aug 25 2004

Keywords

Comments

This constant appears in Benoit Cloitre's generalized Euler-Gauss formula for the Gamma function (see Cloitre link) and is involved in the exact determination of asymptotic limits of certain order-5 linear recursions with varying coefficients (see A097680 for example).

Examples

			c = 1.90795953254354252255333813972952036908516068359082968228223...
		

References

  • A. M. Odlyzko, Linear recurrences with varying coefficients, in Handbook of Combinatorics, Vol. 2, R. L. Graham, M. Grotschel and L. Lovasz, eds., Elsevier, Amsterdam, 1995, pp. 1135-1138.

Crossrefs

Programs

  • Mathematica
    RealDigits[ GoldenRatio^(Sqrt[5]/2)/5^(1/4)*E^(Pi/2Sqrt[1 - 2/Sqrt[5]]), 10, 105][[1]] (* Robert G. Wilson v, Aug 27 2004 *)
  • PARI
    5*exp(psi(3/5)+Euler)

Formula

c = ((sqrt(5)+1)/2)^(sqrt(5)/2)/5^(1/4)*exp(Pi/2*sqrt(1-2/sqrt(5))).

Extensions

More terms from Robert G. Wilson v, Aug 27 2004

A097670 Decimal expansion of the constant 5*exp(psi(4/5) + EulerGamma), where EulerGamma is the Euler-Mascheroni constant (A001620) and psi(x) is the digamma function.

Original entry on oeis.org

3, 3, 9, 2, 7, 6, 4, 2, 7, 8, 9, 2, 7, 8, 4, 9, 8, 0, 7, 7, 0, 4, 7, 5, 5, 0, 5, 6, 5, 5, 4, 4, 7, 1, 2, 8, 3, 9, 2, 7, 4, 0, 1, 0, 9, 2, 5, 8, 6, 0, 8, 4, 4, 2, 2, 3, 4, 7, 8, 0, 8, 4, 4, 1, 9, 3, 5, 2, 4, 6, 3, 6, 1, 5, 9, 8, 0, 3, 4, 6, 1, 3, 5, 1, 7, 3, 5, 0, 1, 0, 5, 1, 9, 3, 2, 9, 7, 8, 5, 7, 3, 4, 6, 7, 3
Offset: 1

Views

Author

Paul D. Hanna, Aug 25 2004

Keywords

Comments

This constant appears in Benoit Cloitre's generalized Euler-Gauss formula for the Gamma function (see Cloitre link) and is involved in the exact determination of asymptotic limits of certain order-5 linear recursions with varying coefficients (see A097680 for example).

Examples

			c = 3.39276427892784980770475505655447128392740109258608442234780...
		

References

  • A. M. Odlyzko, Linear recurrences with varying coefficients, in Handbook of Combinatorics, Vol. 2, R. L. Graham, M. Grotschel and L. Lovasz, eds., Elsevier, Amsterdam, 1995, pp. 1135-1138.

Crossrefs

Programs

  • Mathematica
    RealDigits[ GoldenRatio^(-Sqrt[5]/2)/5^(1/4)*E^(Pi/2Sqrt[1 + 2/Sqrt[5]]), 10, 105][[1]] (* Robert G. Wilson v, Aug 27 2004 *)
  • PARI
    5*exp(psi(4/5)+Euler)

Formula

c = ((sqrt(5)+1)/2)^(-sqrt(5)/2)/5^(1/4)*exp(Pi/2*sqrt(1+2/sqrt(5))).

Extensions

More terms from Robert G. Wilson v, Aug 27 2004

A097672 Decimal expansion of the constant 6*exp(psi(5/6) + EulerGamma), where EulerGamma is the Euler-Mascheroni constant (A001620) and psi(x) is the digamma function.

Original entry on oeis.org

4, 3, 8, 5, 2, 4, 5, 9, 8, 6, 2, 5, 0, 8, 0, 8, 1, 7, 3, 6, 9, 9, 4, 8, 9, 9, 4, 3, 2, 2, 9, 5, 6, 2, 0, 7, 7, 6, 5, 0, 8, 0, 1, 2, 8, 5, 0, 0, 9, 0, 2, 7, 6, 3, 0, 4, 2, 0, 0, 6, 5, 5, 4, 6, 7, 7, 6, 4, 3, 3, 1, 5, 6, 4, 6, 0, 8, 4, 8, 1, 1, 5, 4, 4, 3, 9, 9, 7, 3, 9, 5, 5, 1, 5, 6, 0, 8, 7, 7, 8, 8, 4, 6, 6, 7
Offset: 1

Views

Author

Paul D. Hanna, Aug 25 2004

Keywords

Comments

This constant appears in Benoit Cloitre's generalized Euler-Gauss formula for the Gamma function (see Cloitre link) and is involved in the exact determination of asymptotic limits of certain order-6 linear recursions with varying coefficients (see A097681 for example).

Examples

			c = 4.38524598625080817369948994322956207765080128500902763042006...
		

References

  • A. M. Odlyzko, Linear recurrences with varying coefficients, in Handbook of Combinatorics, Vol. 2, R. L. Graham, M. Grotschel and L. Lovasz, eds., Elsevier, Amsterdam, 1995, pp. 1135-1138.

Crossrefs

Programs

  • Mathematica
    RealDigits[1/Sqrt[12]*E^(Pi/2Sqrt[3]), 10, 105][[1]] (* Robert G. Wilson v, Aug 27 2004 *)
  • PARI
    6*exp(psi(5/6)+Euler)

Formula

c = 1/sqrt(12)*exp(Pi/2*sqrt(3)).

Extensions

More terms from Robert G. Wilson v, Aug 27 2004

A097674 Decimal expansion of the constant 8*exp(psi(3/8) + EulerGamma), where EulerGamma is the Euler-Mascheroni constant (A001620) and psi(x) is the digamma function.

Original entry on oeis.org

9, 0, 7, 2, 4, 5, 8, 1, 7, 8, 8, 2, 1, 6, 4, 6, 0, 7, 5, 3, 8, 7, 9, 4, 5, 2, 4, 7, 9, 2, 0, 8, 1, 2, 1, 3, 7, 8, 7, 7, 7, 5, 2, 5, 4, 2, 3, 5, 8, 7, 4, 9, 5, 9, 0, 6, 8, 7, 1, 8, 5, 3, 7, 9, 4, 1, 1, 7, 5, 9, 2, 2, 5, 6, 2, 2, 2, 4, 4, 6, 9, 0, 5, 4, 4, 4, 2, 7, 0, 6, 8, 3, 1, 3, 0, 4, 9, 1, 8, 7, 8, 8, 7, 0, 9
Offset: 0

Views

Author

Paul D. Hanna, Aug 25 2004

Keywords

Comments

This constant appears in Benoit Cloitre's generalized Euler-Gauss formula for the Gamma function (see Cloitre link) and is involved in the exact determination of asymptotic limits of certain order-8 linear recursions with varying coefficients (see A097682 for example).

Examples

			c = 0.90724581788216460753879452479208121378777525423587495906871...
		

References

  • A. M. Odlyzko, Linear recurrences with varying coefficients, in Handbook of Combinatorics, Vol. 2, R. L. Graham, M. Grotschel and L. Lovasz, eds., Elsevier, Amsterdam, 1995, pp. 1135-1138.

Crossrefs

Programs

  • Mathematica
    RealDigits[(1 + Sqrt[2])^(Sqrt[2])/2E^(-Pi/2*(Sqrt[2] - 1)), 10, 105][[1]] (* Robert G. Wilson v, Aug 27 2004 *)
  • PARI
    8*exp(psi(3/8)+Euler)

Formula

c = (1+sqrt(2))^(sqrt(2))/2*exp(-Pi/2*(sqrt(2)-1)).

Extensions

More terms from Robert G. Wilson v, Aug 27 2004

A097675 Decimal expansion of the constant 8*exp(psi(5/8) + EulerGamma), where EulerGamma is the Euler-Mascheroni constant (A001620) and psi(x) is the digamma function.

Original entry on oeis.org

3, 3, 3, 3, 2, 5, 2, 1, 2, 6, 5, 8, 5, 4, 1, 7, 2, 1, 5, 4, 0, 0, 3, 9, 0, 7, 6, 9, 7, 2, 1, 0, 2, 2, 1, 1, 7, 4, 3, 9, 8, 0, 2, 5, 9, 7, 2, 7, 6, 5, 5, 4, 6, 9, 6, 6, 2, 8, 2, 7, 2, 9, 1, 3, 5, 2, 7, 9, 3, 4, 3, 6, 8, 2, 1, 4, 6, 6, 0, 7, 0, 5, 8, 9, 7, 4, 3, 8, 2, 5, 4, 1, 8, 2, 9, 5, 0, 2, 6, 6, 2, 0, 6, 3, 4
Offset: 1

Views

Author

Paul D. Hanna, Aug 25 2004

Keywords

Comments

This constant appears in Benoit Cloitre's generalized Euler-Gauss formula for the Gamma function (see Cloitre link) and is involved in the exact determination of asymptotic limits of certain order-8 linear recursions with varying coefficients (see A097682 for example).

Examples

			c = 3.33325212658541721540039076972102211743980259727655469662827...
		

References

  • A. M. Odlyzko, Linear recurrences with varying coefficients, in Handbook of Combinatorics, Vol. 2, R. L. Graham, M. Grotschel and L. Lovasz, eds., Elsevier, Amsterdam, 1995, pp. 1135-1138.

Crossrefs

Programs

  • Mathematica
    RealDigits[(1 + Sqrt[2])^(Sqrt[2])/2E^(Pi/2*(Sqrt[2] - 1)), 10, 105][[1]] (* Robert G. Wilson v, Aug 27 2004 *)
  • PARI
    8*exp(psi(5/8)+Euler)

Formula

c = (1+sqrt(2))^(sqrt(2))/2*exp(Pi/2*(sqrt(2)-1)).

Extensions

More terms from Robert G. Wilson v, Aug 27 2004

A279161 Define P = e^gamma*loglog(n) and Q = 3/loglog(n), where gamma is Euler's constant A001620. Then a(n) = phi(n) - ceiling(n/(P + Q)), where phi(n) is Euler's function A000010.

Original entry on oeis.org

1, 1, 3, 1, 4, 2, 4, 2, 7, 1, 9, 3, 4, 4, 12, 2, 13, 3, 7, 5, 17, 2, 14, 6, 12, 5, 21, 1, 23, 9, 12, 8, 16, 4, 27, 9, 15, 7, 31, 2, 32, 10, 14, 12, 35, 5, 31, 9, 20, 12, 40, 6, 28, 11, 23, 15, 45, 3, 46, 16, 22, 18, 34, 5, 51, 17, 29, 8, 54, 8, 56, 20, 23, 19
Offset: 3

Views

Author

Vladimir Shevelev, Dec 07 2016

Keywords

Comments

The best known lower estimate for phi(n)is phi(n) > n/(P + Q), n >= 3 [Rosser and Schoenfeld] (and, for each eps > 0, there exist infinitely many n for which phi(n) < n/P', where in P' e^gamma is replaced by e^(gamma-eps) [Landau]). So a(n) >= 0.

References

  • E. Landau, Handbuch der Lehre yon der Verteilung der Primzahlen, 2 vols., Leipzig, Teubner, 1909. Reprinted in 1953 by Chelsea Publishing Co., New York.

Crossrefs

Programs

  • PARI
    a(n)=my(LL=log(log(n)),P=LL*exp(Euler),Q=3/LL); eulerphi(n) - ceil(n/(P+Q)) \\ Charles R Greathouse IV, Dec 07 2016

Extensions

More terms from Peter J. C. Moses, Dec 07 2016

A306765 Decimal expansion of lim_{k->oo} (k^A001620 / k!) * Product_{j=1..k} Gamma(1/j).

Original entry on oeis.org

2, 0, 3, 4, 4, 4, 8, 9, 4, 5, 4, 8, 7, 6, 1, 6, 4, 7, 7, 9, 8, 0, 3, 5, 5, 5, 3, 1, 8, 8, 6, 9, 0, 2, 6, 3, 5, 5, 9, 7, 9, 4, 3, 9, 8, 6, 3, 7, 0, 2, 3, 7, 6, 2, 6, 0, 0, 0, 5, 2, 8, 4, 1, 6, 5, 6, 5, 0, 0, 7, 8, 2, 7, 7, 5, 7, 1, 1, 3, 2, 4, 4, 5, 0, 2, 6, 5, 0, 4, 0, 6, 1, 3, 5, 0, 7, 5, 0, 2, 9, 1, 2, 7, 1, 4
Offset: 1

Views

Author

Vaclav Kotesovec, Mar 08 2019

Keywords

Examples

			2.0344489454876164779803555318869026355979439863702376260005284165650078277571...
		

Crossrefs

Programs

  • Maple
    evalf(exp(-gamma^2 + Sum((-1)^j*Zeta(j)^2/j, j=2..infinity)), 100);
  • Mathematica
    slogam = Table[Sum[LogGamma[1/j], {j, 1, n}], {n, 1, 1000}]; $MaxExtraPrecision = 1000; funs[n_] := E^slogam[[n]] * n^EulerGamma/n!; Do[Print[N[Sum[(-1)^(m + j) * funs[j*Floor[Length[slogam]/m]] * (j^(m - 1)/(j - 1)!/(m - j)!), {j, 1, m}], 80]], {m, 10, 100, 10}]
  • PARI
    exp(-Euler^2 + sumalt(j=2, (-1)^j*zeta(j)^2/j))

Formula

Equals exp(-gamma^2 + Sum_{j>=2} (-1)^j*Zeta(j)^2/j), where gamma is the Euler-Mascheroni constant A001620.
Equals exp(-gamma^2 + A306769).
Equals lim_{k->oo} k^(k*(2*k+1) + 2*gamma) * (2*Pi)^k * exp(1/6 + log(k)^2 - 2*k^2) / A306760(k).

A059559 Beatty sequence for 1 + log(1/gamma), (gamma is the Euler-Mascheroni constant A001620).

Original entry on oeis.org

1, 3, 4, 6, 7, 9, 10, 12, 13, 15, 17, 18, 20, 21, 23, 24, 26, 27, 29, 30, 32, 34, 35, 37, 38, 40, 41, 43, 44, 46, 48, 49, 51, 52, 54, 55, 57, 58, 60, 61, 63, 65, 66, 68, 69, 71, 72, 74, 75, 77, 79, 80, 82, 83, 85, 86, 88, 89, 91, 92, 94, 96, 97, 99, 100, 102, 103, 105, 106
Offset: 1

Views

Author

Mitch Harris, Jan 22 2001

Keywords

Crossrefs

Beatty complement is A059560.

Programs

  • Magma
    R:=RealField(100); [Floor(1+Log(1/EulerGamma(R))*n): n in [1..100]]; // G. C. Greubel, Aug 27 2018
  • Mathematica
    Table[Floor[n*(1 + Log[1/EulerGamma])], {n,1,100}] (* G. C. Greubel, Aug 27 2018 *)
  • PARI
    { default(realprecision, 100); b=1 + log(1/Euler); for (n = 1, 2000, write("b059559.txt", n, " ", floor(n*b)); ) } \\ Harry J. Smith, Jun 28 2009
    

Formula

a(n) = floor(n*(1 + log(1/Euler))). - Michel Marcus, Jan 05 2015

Extensions

Corrected the definition from 1-log(1/gamma) to 1+log(1/gamma). - Harry J. Smith, Jun 28 2009
Previous Showing 21-30 of 1287 results. Next