cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 1287 results. Next

A059856 Write down decimal expansion of Euler-Mascheroni constant gamma (A001620); divide up into minimal chunks so that chunks have increasing length and do not begin with zero.

Original entry on oeis.org

5, 77, 215, 66490, 1532860, 6065120900, 82402431042, 159335939923, 5988057672348, 84867726777664, 670936947063291, 7467495146314472, 498070824809605040, 1448654283622417399, 76449235362535003337
Offset: 0

Views

Author

Jason Earls, Feb 27 2001

Keywords

Examples

			0.5772156649015328606065120900824024310421593359399235...
		

Crossrefs

Extensions

More terms from Tracy Poff (tracy.poff(AT)gmail.com), Apr 15 2005

A089044 Numbers n such that abs(d(n) - log(n) + 1 - 2*gamma) is a decreasing sequence, where d(n) is the number of divisors A000005(n) and gamma is Euler's constant A001620.

Original entry on oeis.org

1, 3, 5, 7, 46, 2514, 2522, 2526, 2534, 2536, 2542, 2546, 2553, 2555, 18873, 139454, 139475, 7614005, 7614010, 7614015, 7614022, 7614030, 7614033, 7614034, 7614056, 7614062, 7614066, 7614069, 7614079, 7614082, 7614086, 7614087, 7614088
Offset: 1

Views

Author

Leroy Quet and Hugo Pfoertner, Dec 02 2003

Keywords

Examples

			a(5)=46 because d(46) - log(46) + 1 - 2*0.5772156649... = 0.016927274... is less than
abs(d(7) - log(7) + 1 - 2*0.5772156649...) = abs(-0.100341479...) with d(46)=4 and d(7)=2.
		

References

  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 5th ed., Oxford Univ. Press, 1979, Theorem 320.

Crossrefs

Cf. A000005 = number of divisors of n, A001620 = Euler's constant gamma, A089084.

Programs

  • Mathematica
    f[n_] := N[ Abs[ DivisorSigma[0, n] - Log@ n + 1 - 2 EulerGamma], 32]; k = 1; lst = {}; mx = Infinity; While[k < 8000000, a = f@k; If[a < mx, mx = a; AppendTo[lst, k]]; k++]; lst (* Robert G. Wilson v, Dec 11 2017 *)
  • PARI
    d=1.0;n=0;\
    for(j=2,16,kmin=round(exp(j-2*Euler+1-2*d));kmax=round(exp(j-2*Euler+1+2*d));\
    for(k=kmin,kmax,dd=abs(numdiv(k)-log(k)+1-2*Euler);\
    if(ddHugo Pfoertner, Dec 08 2017

Extensions

Terms beyond a(5) from Hans Havermann, Dec 02 2003

A089084 Numbers n such that abs ( (sum_m (m=1..n) d(m)) / n - log(n) - 2*gamma + 1) is a decreasing sequence, where d(m) is the number of divisors A000005(m) and gamma is Euler's constant A001620.

Original entry on oeis.org

1, 2, 3, 5, 7, 11, 17, 19, 23, 47, 89, 125, 131, 203, 219, 455, 1475, 2867, 4649, 7291, 36893, 378878, 517914, 693028, 923373, 1835331, 3147909, 3356513, 3506524, 6782094, 20454813, 25494256, 27802807, 28081980, 47214722, 176344865
Offset: 1

Views

Author

Hugo Pfoertner, Dec 04 2003

Keywords

References

Crossrefs

Programs

  • PARI
    s=0;r=2;for(k=1,10^7,s=s+numdiv(k);t=abs(s/k-log(k)-2*Euler+1);if(abs(t)Hugo Pfoertner, Aug 30 2018

Extensions

Terms a(12) and beyond from Hans Havermann

A104015 Binary expansion of Euler's constant (or Euler-Mascheroni constant) gamma (A001620).

Original entry on oeis.org

1, 0, 0, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0
Offset: 0

Views

Author

Bryan Jacobs (bryanjj(AT)gmail.com), Mar 31 2005

Keywords

Examples

			.1001001111000100011001111110...
		

Crossrefs

Cf. A001620.

Programs

A104938 Primes from merging of 4 successive digits in decimal expansion of the Euler-Mascheroni constant A001620.

Original entry on oeis.org

3359, 3593, 5939, 9923, 8677, 2677, 6709, 6947, 6329, 2917, 4951, 1447, 4283, 2417, 6449, 5003, 3733, 3767, 7673, 9491, 2039, 5323, 6211, 4793, 7937, 7057, 3547, 6043, 6733, 7331, 3313, 1399, 7541, 5413, 4139, 8423, 4877, 8431, 3109, 1093, 9973, 3613
Offset: 1

Views

Author

Andrew G. West (WestA(AT)wlu.edu), Mar 29 2005

Keywords

Comments

Leading zeros are not permitted, so each term is 4 digits in length.

Crossrefs

Programs

  • Maple
    Digits := 420 ;
    for sh from 3 do
            p := floor(gamma*10^sh) mod 10000 ;
            if isprime(p) and p > 999 then
                    printf("%d,",p);
            end if;
    end do: # R. J. Mathar, Oct 31 2011
  • Mathematica
    egp[len_]:=Module[{egterms=FromDigits/@Partition[RealDigits[EulerGamma, 10, 1000][[1]],len,1]},Select[egterms,IntegerLength[#]==len&&PrimeQ[#]&]]; egp[4] (* Harvey P. Dale, Oct 29 2011 *)
  • PARI
    L=10^4;for(i=3,999,isprime(p=Euler\.1^i%L)&p*10>L&print1(p",")) \\ M. F. Hasler, Oct 31 2011

Extensions

Offset changed from 0 to 1 by Vincenzo Librandi, Apr 21 2013

A131447 Numerators of n-th approximation of factorial (also called harmonic) expansion of Euler's constant gamma (A001620).

Original entry on oeis.org

0, 1, 1, 13, 23, 83, 2909, 23273, 3491, 3491, 11520301, 30720803, 30720803, 50320675319, 68619102709, 3019240519199, 4666098984217, 1847775197749939, 23405152504832563, 1404309150289953793, 9830164052029676557
Offset: 1

Views

Author

Wolfdieter Lang, Aug 07 2007

Keywords

Comments

Rationals are in lowest terms.

Examples

			Rationals r(n): [0, 1/2, 1/2, 13/24, 23/40, 83/144, 2909/5040, 23273/40320, 3491/6048, ...]
		

References

  • J. Havil, Gamma, (in German), Springer, 2007, p. 118; Gamma: Exploring Euler's Constant, Princeton Univ. Press, 2003.

Crossrefs

Cf. A001620, A096622, A131448 (denominators)

Formula

a(n) = numerator(r(n)), with r(n) = Sum_{k=1..n} b(k)/k!, and b(k) = A096622(k) (factorial expansion of gamma).

A175794 a(n) = Sum_{k=1..n} (-1)^A001620(k).

Original entry on oeis.org

-1, -2, -3, -2, -3, -4, -3, -2, -1, -2, -1, -2, -3, -4, -3, -2, -1, 0, 1, 2, 3, 2, 1, 2, 3, 2, 3, 4, 5, 6, 7, 8, 9, 10, 9, 8, 9, 10, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 2, 1, 0, -1, 0, 1, 2, 1, 0, 1, 0, 1, 0, 1, 2, 3, 4, 5, 6, 5, 4, 5, 6, 5, 4, 3, 4, 5, 6, 7, 6, 7, 6, 5, 6, 5, 6, 5, 6, 7, 6, 7, 6, 5, 4, 5
Offset: 1

Views

Author

Michel Lagneau, Sep 06 2010

Keywords

Examples

			a(6) = -4 is in the sequence because -4 = (-1)^5 + (-1)^7 + (-1)^7 + (-1)^2 + (-1)^1 + (-1)^5
		

Crossrefs

A001620 is the decimal expansion of Euler's constant (or Euler-Mascheroni constant) gamma.

Programs

  • Maple
    with(numtheory):T:=array(1..201): Digits:=200:nn:=10^200:a:=floor(evalf(gamma(0))*nn): n:=a:l:=length(n):n0:=n:s:=0:for m from 1 to l do:q:=n0:u:=irem(q,10):v:=iquo(q,10):n0:=v :T[m]:=u:od: for p from l to 1 by -1 do:s:=s+(-1)^T[p]: printf(`%d, `, s):od:
  • Mathematica
    Rest@ FoldList[ Plus, 0, (-1)^First@ RealDigits[EulerGamma, 10, 200]] (* or *) Accumulate[(-1)^RealDigits[EulerGamma,10,100][[1]]] (* Harvey P. Dale, May 11 2014 *)

A195606 Numerator of floor(gamma*10^n)/10^n, where gamma=A001620 is the Euler-Mascheroni constant.

Original entry on oeis.org

0, 1, 57, 577, 1443, 57721, 115443, 1443039, 28860783, 36075979, 5772156649, 5772156649, 577215664901, 1154431329803, 57721566490153, 144303916225383, 180379895281729, 28860783245076643, 28860783245076643, 2886078324507664303
Offset: 0

Views

Author

M. F. Hasler, following a suggestion by Eric Angelini, Sep 21 2011

Keywords

Comments

Numerator of the decimal fraction of gamma=0.5772... truncated to a given number of decimal places.

Examples

			a(3) = 577 is the numerator of 0.577 = 577/1000.
a(4) = 1443 is the numerator of 0.5772 = 5772/10000 = 1443/2500.
		

Programs

  • Magma
    R:=RealField(100); [Numerator(Floor(EulerGamma(R)*10^n)/10^n): n in [0..50]]; // G. C. Greubel, Aug 27 2018
  • Mathematica
    Numerator[Table[Floor[EulerGamma*10^n]/10^n, {n, 0, 50}]] (* G. C. Greubel, Aug 27 2018 *)
  • PARI
    a(n,c=Euler)=numerator(c\.1^n/10^n)  \\ M. F. Hasler, Sep 21 2011
    

A213440 Decimal expansion of 1 + log(gamma), where gamma is Euler's constant A001620.

Original entry on oeis.org

4, 5, 0, 4, 6, 0, 6, 8, 7, 0, 1, 8, 3, 5, 5, 1, 7, 7, 6, 6, 2, 3, 3, 8, 2, 3, 1, 1, 9, 7, 0, 9, 2, 2, 1, 1, 6, 6, 9, 3, 0, 1, 0, 1, 8, 7, 3, 6, 9, 3, 5, 2, 0, 8, 9, 0, 9, 8, 4, 8, 6, 9, 5, 4, 2, 3, 3, 6, 8, 5, 7, 9, 9, 4, 4, 2, 4, 6, 9, 5, 2, 4, 3, 7, 3, 8, 1, 0, 1, 0, 8, 8, 7, 2, 3, 8, 5, 9, 3, 1, 5, 8, 5, 3, 3, 0, 7, 2, 4, 2, 0, 8, 0, 9, 5, 9, 5, 0, 4, 4, 7, 3, 6, 8, 1, 4
Offset: 0

Views

Author

N. J. A. Sloane, Jun 11 2012

Keywords

Examples

			0.4504606870183551776623382311970922116693010187369352...
		

References

  • W. E. Mansell, Tables of Natural and Common Logarithms. Royal Society Mathematical Tables, Vol. 8, Cambridge Univ. Press, 1964, p. XVIII.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

Crossrefs

Programs

  • Magma
    R:= RealField(100); 1 + Log(EulerGamma(R)); // G. C. Greubel, Aug 27 2018
  • Mathematica
    RealDigits[1 + Log[EulerGamma], 10, 100][[1]] (* G. C. Greubel, Aug 27 2018 *)
  • PARI
    default(realprecision, 100); 1 + log(Euler) \\ G. C. Greubel, Aug 27 2018
    

A215722 Decimal expansion of Pi*(3 - gamma)/32, where gamma is Euler's constant A001620.

Original entry on oeis.org

2, 3, 7, 8, 5, 6, 2, 9, 5, 8, 8, 6, 8, 0, 5, 5, 0, 6, 7, 4, 2, 9, 6, 2, 3, 6, 3, 0, 8, 0, 2, 3, 3, 3, 9, 4, 7, 9, 6, 3, 7, 0, 1, 2, 5, 5, 2, 3, 5, 2, 2, 3, 9, 5, 4, 4, 6, 5, 2, 1, 4, 2, 8, 0, 8, 5, 1, 8, 5, 6, 2, 4, 6, 6, 3, 3, 9, 3, 2, 7, 9, 9, 1, 3, 7, 1, 1, 2, 1, 7, 8, 7, 9, 8, 3, 7, 5, 2, 3, 8, 3, 7, 7, 2, 9, 5, 5, 5, 3, 4, 0, 9
Offset: 0

Views

Author

Keywords

Comments

Volchkov shows that this is equal to integral(t=0..oo, (1-12*t^2)/(1+4*t^2)^3) * integral(s=1/2..oo, log |zeta(s + i*t)|) if and only if the Riemann hypothesis holds.

Examples

			0.237856295886805506742962363080233394796370125523522395446521428085...
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 1.6.2, p. 42.

Programs

  • Magma
    R:= RealField(100); Pi(R)*(3 - EulerGamma(R))/32; // G. C. Greubel, Aug 27 2018
  • Mathematica
    RealDigits[Pi*(3 - EulerGamma)/32, 10, 100][[1]] (* G. C. Greubel, Aug 27 2018 *)
  • PARI
    Pi*(3-Euler)/32
    
Previous Showing 31-40 of 1287 results. Next