cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 68 results. Next

A006170 Number of factorization patterns of polynomials of degree n over F_5.

Original entry on oeis.org

1, 3, 5, 11, 17, 33, 50, 89, 135, 223, 332, 531, 776, 1194, 1730, 2591, 3700, 5429, 7660, 11035, 15417, 21851, 30225, 42300, 57966, 80146, 108956, 149076, 201073, 272587, 365009, 490656, 652700, 870597, 1150875, 1524479, 2003426, 2636589, 3446140
Offset: 1

Views

Author

Keywords

References

  • R. A. Hultquist, G. L. Mullen and H. Niederreiter, Association schemes and derived PBIB designs of prime power order, Ars. Combin., 25 (1988), 65-82.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Formula

Euler transform of sequence b(n) = sum_{d|n, A001692(d)>=n/d} 1. - Franklin T. Adams-Watters, Jun 19 2006

Extensions

More terms from Franklin T. Adams-Watters, Jun 19 2006

A056290 Number of primitive (period n) n-bead necklaces with exactly five different colored beads.

Original entry on oeis.org

0, 0, 0, 0, 24, 300, 2400, 15750, 92680, 510288, 2691600, 13793850, 69309240, 343499100, 1686135352, 8221421250, 39901776360, 193053923860, 932142850800, 4495236287850, 21664357532920, 104388118174500, 503044634004000, 2425003910574000, 11696087875731600
Offset: 1

Views

Author

Keywords

Comments

Turning over the necklace is not allowed.

References

  • M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]

Crossrefs

Cf. A001692.
Column k=5 of A254040.

Programs

  • Maple
    with(numtheory):
    b:= proc(n, k) option remember; `if`(n=0, 1,
          add(mobius(n/d)*k^d, d=divisors(n))/n)
        end:
    a:= n-> add(b(n, 5-j)*binomial(5, j)*(-1)^j, j=0..5):
    seq(a(n), n=1..30);  # Alois P. Heinz, Jan 25 2015
  • Mathematica
    b[n_, k_] := b[n, k] = If[n==0, 1, DivisorSum[n, MoebiusMu[n/#]*k^# &]/n];
    a[n_] := Sum[b[n, 5 - j]*Binomial[5, j]*(-1)^j, {j, 0, 5}];
    Table[a[n], {n, 1, 30}] (* Jean-François Alcover, Jun 06 2018, after Alois P. Heinz *)

Formula

sum mu(d)*A056285(n/d) where d|n.

A056301 Number of primitive (period n) n-bead necklace structures using a maximum of five different colored beads.

Original entry on oeis.org

1, 1, 2, 5, 11, 38, 122, 496, 2005, 8707, 38364, 173562, 792827, 3662800, 17034367, 79702578, 374624253, 1767881397, 8370666416, 39751064122, 189262621739, 903220020390, 4319518316898, 20697040024784
Offset: 1

Views

Author

Keywords

Comments

Turning over the necklace is not allowed. Colors may be permuted without changing the necklace structure.

References

  • M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]

Crossrefs

Formula

a(n) = Sum_{d|n} mu(d) * A056293(n/d); mu = A008683.

A059862 a(n) = Product_{i=3..n} (prime(i) - 3).

Original entry on oeis.org

1, 1, 2, 8, 64, 640, 8960, 143360, 2867200, 74547200, 2087321600, 70968934400, 2696819507200, 107872780288000, 4746402332672000, 237320116633600000, 13289926531481600000, 770815738825932800000, 49332207284859699200000, 3354590095370459545600000, 234821306675932168192000000
Offset: 1

Views

Author

Labos Elemer, Feb 28 2001

Keywords

Examples

			For n = 6, a(6) = 640 because:
prime(1..6)-3 = (-1,0,2,4,8,10) -> (1,1,2,4,8,10)
and
1*1*2*4*8*10 = 640. [Example generalized and reformatted per observation of _Jon E. Schoenfield_ by _Harlan J. Brothers_, Jul 15 2018]
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge, 2003, pp. 84-94.
  • R. K. Guy, Unsolved Problems in Number Theory, A8, A1
  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 5th ed., Oxford Univ. Press, 1979.
  • G. Polya, Mathematics and Plausible Reasoning, Vol. II, Appendix Princeton UP, 1954.

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember;
          `if`(n<3, 1, a(n-1)*(ithprime(n)-3))
        end:
    seq(a(n), n=1..21);  # Alois P. Heinz, Nov 19 2021
  • Mathematica
    Join[{1, 1}, Table[Product[Prime[i] - 3, {i, 3, n}], {n, 3, 19}]] (* Harlan J. Brothers, Jul 02 2018 *)
    a[1] = 1; a[2] = 1; a[n_] := a[n] = a[n - 1] (Prime[n] - 3);
    Table[a[n], {n, 19}] (* Harlan J. Brothers, Jul 02 2018 *)
  • PARI
    a(n) = prod(i=3, n, prime(i) - 3); \\ Michel Marcus, Jul 15 2018

Formula

a(1) = a(2) = 1; a(n) = a(n-1) * (prime(n) - 3) for n >= 3. - David A. Corneth, Jul 15 2018

Extensions

Name clarified, offset corrected by David A. Corneth, Jul 15 2018

A065417 Exponents in expansion of rank-2 Artin constant product(1-1/(p^3-p^2), p=prime) as a product zeta(n)^(-a(n)).

Original entry on oeis.org

0, 0, 1, 1, 1, 1, 2, 2, 3, 4, 6, 7, 11, 14, 20, 27, 39, 52, 75, 102, 145, 201, 286, 397, 565, 791, 1123, 1581, 2248, 3173, 4517, 6399, 9112, 12945, 18457, 26270, 37502, 53478, 76416, 109146, 156135, 223301, 319764, 457884, 656288, 940795, 1349671, 1936620
Offset: 1

Views

Author

N. J. A. Sloane, Nov 15 2001

Keywords

Comments

Inverse Euler transform of A078012. (The inverse of 1-1/(p^3-p^2) is p^2(p-1)/(p^3-p^2-1) = 1-1/(1+p^2-p^3). Setting 1/p=x gives (1-x)/(1-x-x^3), the g.f. of A078012.) - R. J. Mathar, Jul 26 2010

Examples

			x^3 + x^4 + x^5 + x^6 + 2*x^7 + 2*x^8 + 3*x^9 + 4*x^10 + 6*x^11 + 7*x^12 + ...
		

Crossrefs

Cf. A065414.

Programs

  • Maple
    read("transforms") ;
    A078012 := proc(n) option remember; if n <3 then op(n+1,[1,0,0]) ; else procname(n-1)+procname(n-3) ; end if; end proc:
    a078012 := [seq(A078012(n),n=1..80)] ; EULERi(%) ;
    # R. J. Mathar, Jul 26 2010
  • Mathematica
    A078012[n_] := A078012[n] = If[n<3, {1, 0, 0}[[n+1]], A078012[n-1] + A078012[n-3]]; a078012 = Array[A078012, m = 80];
    s = {}; For[i = 1, i <= m, i++, AppendTo[s, i*a078012[[i]] - Sum[s[[d]] * a078012[[i-d]], {d, i-1}]]]; Table[Sum[If[Divisible[i, d], MoebiusMu[i/d ], 0]*s[[d]], {d, 1, i}]/i, {i, m}] (* Jean-François Alcover, Apr 15 2016, after R. J. Mathar *)

Formula

a(n) ~ r^n / n, where r = A092526 = 1.465571231876768... - Vaclav Kotesovec, Jun 13 2020

Extensions

More terms from R. J. Mathar, Jul 26 2010

A065470 Decimal expansion of Product_{p prime} (1 - 1/(p*(p^2-1))).

Original entry on oeis.org

7, 8, 8, 1, 6, 2, 5, 0, 0, 0, 3, 0, 2, 2, 0, 7, 0, 0, 5, 7, 6, 9, 4, 9, 5, 9, 3, 0, 5, 3, 5, 0, 3, 9, 6, 8, 9, 5, 6, 1, 6, 3, 6, 8, 4, 6, 9, 3, 5, 6, 9, 3, 0, 3, 3, 5, 2, 5, 1, 4, 2, 9, 2, 1, 2, 7, 5, 4, 1, 3, 2, 9, 4, 1, 9, 7, 8, 5, 4, 6, 4, 0, 4, 2, 4, 8, 6, 5, 4, 4, 0, 6, 9, 8, 8, 1, 2, 3
Offset: 0

Views

Author

N. J. A. Sloane, Nov 19 2001

Keywords

Examples

			0.7881625000302207005769495930535...
		

Crossrefs

Programs

  • Mathematica
    $MaxExtraPrecision = 600; digits = 98; terms = 600; P[n_] := PrimeZetaP[n];
    LR = Join[{0, 0, 0}, LinearRecurrence[{0, 2, 1, -1, -1}, {-3, 0, -5, -3, -7}, terms + 10]]; r[n_Integer] := LR[[n]]; Exp[NSum[r[n]*P[n - 1]/(n - 1), {n, 3, terms}, NSumTerms -> terms, WorkingPrecision -> digits + 10]] // RealDigits[#, 10, digits]& // First (* Jean-François Alcover, Apr 18 2016 *)
  • PARI
    prodeulerrat(1 - 1/(p*(p^2-1))) \\ Amiram Eldar, Mar 13 2021

A065471 Decimal expansion of Product_{p prime} (1 - 1/(p^2*(p^2-1))).

Original entry on oeis.org

9, 0, 1, 9, 2, 6, 0, 3, 9, 5, 8, 7, 0, 8, 2, 1, 7, 1, 3, 7, 7, 7, 1, 5, 2, 0, 2, 5, 5, 0, 4, 7, 1, 9, 3, 4, 1, 5, 2, 5, 5, 5, 4, 5, 3, 1, 5, 5, 5, 5, 5, 3, 5, 8, 3, 5, 8, 4, 3, 3, 3, 2, 7, 2, 8, 9, 2, 9, 3, 7, 8, 1, 0, 7, 2, 5, 6, 8, 1, 5, 7, 5, 2, 3, 8, 9, 0, 4, 9, 9, 9, 0, 1, 0, 3, 3, 8, 0
Offset: 0

Views

Author

N. J. A. Sloane, Nov 19 2001

Keywords

Examples

			0.90192603958708217137771520255047...
		

Crossrefs

Programs

  • Mathematica
    $MaxExtraPrecision = 500; digits = 98; terms = 500; P[n_] := PrimeZetaP[n]; LR = Join[{0, 0, 0, 0}, LinearRecurrence[{0, 2, 0, 0, 0, -1}, {-4, 0, -6, 0, -12, 0}, terms + 10]]; r[n_Integer] := LR[[n]]; Exp[NSum[r[n]*P[n - 1]/(n - 1), {n, 3, terms}, NSumTerms -> terms, WorkingPrecision -> digits + 10]] // RealDigits[#, 10, digits]& // First (* Jean-François Alcover, Apr 18 2016 *)
  • PARI
    prodeulerrat(1 - 1/(p^2*(p^2-1))) \\ Amiram Eldar, Mar 16 2021

A065479 Decimal expansion of Product_{p prime >= 3} (1 - 1/(p^2-p-1)).

Original entry on oeis.org

7, 1, 5, 4, 6, 8, 2, 3, 5, 9, 8, 9, 9, 5, 5, 8, 4, 5, 0, 9, 4, 7, 7, 4, 7, 0, 5, 7, 1, 1, 7, 2, 8, 0, 7, 7, 6, 7, 5, 9, 7, 6, 2, 4, 8, 9, 8, 3, 7, 6, 7, 7, 6, 7, 4, 2, 6, 7, 2, 4, 7, 6, 9, 4, 4, 2, 4, 9, 5, 3, 5, 5, 5, 5, 1, 9, 7, 5, 5, 8, 5, 6, 8, 3, 3, 1, 5, 5, 5, 4, 0, 9, 0, 9, 0, 1, 1, 3
Offset: 0

Views

Author

N. J. A. Sloane, Nov 19 2001

Keywords

Examples

			0.715468235989955845094774705711728...
		

Crossrefs

Programs

  • Mathematica
    $MaxExtraPrecision = 600; digits = 98; terms = 600; P[n_] := PrimeZetaP[n] - 1/2^n;LR = LinearRecurrence[{2, 2, -3, -2}, {0, 0, -2, -3}, terms + 10]; r[n_Integer] := LR[[n]]; Exp[NSum[r[n]*P[n - 1]/(n - 1), {n, 3, terms}, NSumTerms -> terms, WorkingPrecision -> digits + 10]] // RealDigits[#, 10, digits]& // First (* Jean-François Alcover, Apr 18 2016 *)
  • PARI
    prodeulerrat(1 - 1/(p^2-p-1), 1, 3) \\ Amiram Eldar, Mar 15 2021

A065481 Decimal expansion of Product_{p prime} (1 - 1/(p^2-2)).

Original entry on oeis.org

3, 8, 8, 9, 4, 5, 1, 8, 9, 9, 7, 9, 5, 6, 1, 9, 2, 9, 3, 1, 1, 5, 7, 8, 7, 8, 9, 7, 6, 4, 4, 5, 0, 9, 1, 2, 6, 7, 6, 5, 4, 4, 9, 5, 4, 2, 7, 5, 6, 9, 5, 8, 6, 4, 7, 4, 1, 4, 3, 2, 0, 9, 8, 3, 7, 0, 0, 3, 9, 1, 2, 3, 3, 1, 9, 1, 7, 9, 0, 3, 2, 8, 0, 9, 7, 9, 7, 2, 7, 7, 5, 9, 6, 0, 8, 6, 9, 1
Offset: 0

Views

Author

N. J. A. Sloane, Nov 19 2001

Keywords

Examples

			0.38894518997956192931157878976445...
		

Crossrefs

Programs

  • Mathematica
    $MaxExtraPrecision = 2000; digits = 98; terms = 2000; P[n_] := PrimeZetaP[n ]; LR = LinearRecurrence[{0, 5, 0, -6}, {0, 0, -2, 0}, terms + 10]; r[n_Integer] := LR[[n]]; Exp[NSum[r[n]*P[n - 1]/(n - 1), {n, 3, terms}, NSumTerms -> terms, WorkingPrecision -> digits + 10]] // RealDigits[#, 10, digits]& // First (* Jean-François Alcover, Apr 18 2016 *)
  • PARI
    prodeulerrat(1 - 1/(p^2-2)) \\ Amiram Eldar, Mar 15 2021

A065486 Decimal expansion of Product_{p prime} (1 + 1/(p+1)^2).

Original entry on oeis.org

1, 2, 6, 6, 5, 5, 8, 5, 0, 1, 4, 7, 1, 5, 2, 8, 5, 7, 1, 6, 1, 4, 5, 4, 7, 1, 1, 2, 6, 2, 9, 6, 4, 0, 8, 4, 5, 3, 9, 5, 5, 6, 0, 2, 3, 5, 4, 5, 7, 3, 4, 4, 8, 2, 1, 1, 2, 1, 9, 6, 7, 3, 2, 9, 5, 4, 8, 3, 9, 6, 1, 0, 6, 0, 7, 5, 1, 6, 4, 0, 8, 6, 8, 8, 8, 1, 7, 2, 0, 9, 0, 4, 2, 3, 6, 8, 2, 1, 5
Offset: 1

Views

Author

N. J. A. Sloane, Nov 19 2001

Keywords

Examples

			1.26655850147152857161454711262964...
		

Crossrefs

Programs

  • Mathematica
    $MaxExtraPrecision = 800; digits = 99; terms = 800; P[n_] := PrimeZetaP[n]; LR = LinearRecurrence[{-3, -4, -2}, {0, 0, 2}, terms + 10]; r[n_Integer] := LR[[n]]; Exp[NSum[r[n]*P[n - 1]/(n - 1), {n, 3, terms}, NSumTerms -> terms, WorkingPrecision -> digits + 10]] // RealDigits[#, 10, digits]& // First (* Jean-François Alcover, Apr 18 2016 *)
  • PARI
    prodeulerrat(1 + 1/(p+1)^2) \\ Amiram Eldar, Mar 15 2021

Formula

Equals Sum_{k>=1} mu(k)^2/sigma(k)^2, where mu is the Möbius function (A008683) and sigma(k) is the sum of divisors of k (A000203). - Amiram Eldar, Jan 14 2022
Previous Showing 41-50 of 68 results. Next