1, 3, 2, 11, 12, 3, 50, 70, 30, 4, 274, 450, 255, 60, 5, 1764, 3248, 2205, 700, 105, 6, 13068, 26264, 20307, 7840, 1610, 168, 7, 109584, 236248, 201852, 89796, 22680, 3276, 252, 8, 1026576, 2345400, 2171040, 1077300, 316365, 56700, 6090, 360, 9
Offset: 1
A112488
Third column of triangle A112486 used for e.g.f.s of |Stirling1| = |A008275| diagonals.
Original entry on oeis.org
3, 35, 340, 3304, 33740, 367884, 4302216, 53961336, 724534272, 10386470016, 158507316864, 2567670088320, 44027031755520, 796963357981440, 15192135816261120, 304269507433658880, 6388907821376256000
Offset: 2
340 = a(4) = 6*35 + 5*26.
-
A112486[n_, k_] := A112486[n, k] = Which[n < 0 || k < 0 || k > n, 0, n == 0, 1, True, (n + k)*A112486[n - 1, k] + (n + k - 1)*A112486[n - 1, k - 1]]; Table[A112486[n, 2], {n, 2, 50}] (* G. C. Greubel, Jan 21 2017 *)
A325137
Triangle T(n, k) = [x^n] (n + k + x)!/(k + x)! for 0 <= k <= n, read by rows.
Original entry on oeis.org
1, 1, 1, 2, 5, 1, 6, 26, 12, 1, 24, 154, 119, 22, 1, 120, 1044, 1175, 355, 35, 1, 720, 8028, 12154, 5265, 835, 51, 1, 5040, 69264, 133938, 77224, 17360, 1687, 70, 1, 40320, 663696, 1580508, 1155420, 342769, 46816, 3066, 92, 1
Offset: 0
Triangle starts:
[0] 1
[1] 1, 1
[2] 2, 5, 1
[3] 6, 26, 12, 1
[4] 24, 154, 119, 22, 1
[5] 120, 1044, 1175, 355, 35, 1
[6] 720, 8028, 12154, 5265, 835, 51, 1
[7] 5040, 69264, 133938, 77224, 17360, 1687, 70, 1
[8] 40320, 663696, 1580508, 1155420, 342769, 46816, 3066, 92, 1
[9] 362880, 6999840, 19978308, 17893196, 6687009, 1197273, 109494, 5154, 117, 1
A000142, A001705, A001712, A001718, A001724, ...
-
T := (n, k) -> add(binomial(j+k, k)*(k+1)^j*abs(Stirling1(n, j+k)), j=0..n-k);
seq(seq(T(n,k), k=0..n), n=0..8);
# Note that for n > 16 Maple fails (at least in some versions) to compute the
# terms properly. Inserting 'simplify' or numerical evaluation might help.
A325137Row := proc(n) local ogf, ser; ogf := (n, k) -> (n+k+x)!/(k+x)!;
ser := (n, k) -> series(ogf(n,k),x,k+2); seq(coeff(ser(n,k),x,k), k=0..n) end: seq(A325137Row(n), n=0..8);
Comments